Navigation
index
modules
|
modules
|
next
|
Numpy and Scipy Documentation
»
Numpy manual contents
ΒΆ
NumPy User Guide
Introduction
What is NumPy?
Building and installing NumPy
Binary installers
Windows
Linux
Mac OS X
Building from source
Prerequisites
FORTRAN ABI mismatch
Choosing the fortran compiler
How to check the ABI of blas/lapack/atlas
Disabling ATLAS and other accelerated libraries
Supplying additional compiler flags
Building with ATLAS support
Ubuntu 8.10 (Intrepid) and 9.04 (Jaunty)
Ubuntu 8.04 and lower
How to find documentation
Numpy basics
Data types
Array types and conversions between types
Array Scalars
Array creation
Introduction
Converting Python array_like Objects to Numpy Arrays
Intrinsic Numpy Array Creation
Reading Arrays From Disk
Standard Binary Formats
Common ASCII Formats
Custom Binary Formats
Use of Special Libraries
I/O with Numpy
Importing data with
genfromtxt
Defining the input
Splitting the lines into columns
The
delimiter
argument
The
autostrip
argument
The
comments
argument
Skipping lines and choosing columns
The
skip_header
and
skip_footer
arguments
The
usecols
argument
Choosing the data type
Setting the names
The
names
argument
The
defaultfmt
argument
Validating names
Tweaking the conversion
The
converters
argument
Using missing and filling values
missing_values
filling_values
usemask
Shortcut functions
Indexing
Assignment vs referencing
Single element indexing
Other indexing options
Index arrays
Indexing Multi-dimensional arrays
Boolean or “mask” index arrays
Combining index arrays with slices
Structural indexing tools
Assigning values to indexed arrays
Dealing with variable numbers of indices within programs
Broadcasting
General Broadcasting Rules
Byte-swapping
Introduction to byte ordering and ndarrays
Changing byte ordering
Data and dtype endianness don’t match, change dtype to match data
Data and type endianness don’t match, change data to match dtype
Data and dtype endianness match, swap data and dtype
Structured arrays (aka “Record arrays”)
Structured Arrays (and Record Arrays)
Introduction
Defining Structured Arrays
Accessing and modifying field names
Accessing field titles
Accessing multiple fields at once
Filling structured arrays
More information
Subclassing ndarray
Credits
Introduction
ndarrays and object creation
View casting
Creating new from template
Relationship of view casting and new-from-template
Implications for subclassing
A brief Python primer on
__new__
and
__init__
The role of
__array_finalize__
Simple example - adding an extra attribute to ndarray
Slightly more realistic example - attribute added to existing array
__array_wrap__
for ufuncs
Extra gotchas - custom
__del__
methods and ndarray.base
Performance
Miscellaneous
IEEE 754 Floating Point Special Values:
How numpy handles numerical exceptions:
Examples:
Interfacing to C:
Interfacing to Fortran:
Interfacing to C++:
Methods vs. Functions
Using Numpy C-API
How to extend NumPy
Writing an extension module
Required subroutine
Defining functions
Functions without keyword arguments
Functions with keyword arguments
Reference counting
Dealing with array objects
Converting an arbitrary sequence object
Creating a brand-new ndarray
Getting at ndarray memory and accessing elements of the ndarray
Example
Using Python as glue
Calling other compiled libraries from Python
Hand-generated wrappers
f2py
Creating source for a basic extension module
Creating a compiled extension module
Improving the basic interface
Inserting directives in Fortran source
A filtering example
Calling f2py from Python
Automatic extension module generation
Conclusion
weave
Speed up code involving arrays (also see scipy.numexpr)
Inline C-code
Simplify creation of an extension module
Conclusion
Pyrex
Pyrex-add
Pyrex-filter
Conclusion
ctypes
Having a shared library
Loading the shared library
Converting arguments
Calling the function
Complete example
Conclusion
Additional tools you may find useful
SWIG
SIP
Boost Python
Instant
PyInline
PyFort
Beyond the Basics
Iterating over elements in the array
Basic Iteration
Iterating over all but one axis
Iterating over multiple arrays
Broadcasting over multiple arrays
Creating a new universal function
User-defined data-types
Adding the new data-type
Registering a casting function
Registering coercion rules
Registering a ufunc loop
Subtyping the ndarray in C
Creating sub-types
Specific features of ndarray sub-typing
The __array_finalize__ method
The __array_priority__ attribute
The __array_wrap__ method
NumPy Reference
Array objects
The N-dimensional array (
ndarray
)
Constructing arrays
numpy.ndarray
numpy.dtype
numpy.imag
numpy.real
numpy.all
numpy.any
numpy.argmax
numpy.argmin
numpy.argsort
numpy.choose
numpy.clip
numpy.compress
numpy.conj
numpy.copy
numpy.cumprod
numpy.cumsum
numpy.diagonal
numpy.dot
numpy.mean
numpy.nonzero
numpy.prod
numpy.ptp
numpy.put
numpy.ravel
numpy.repeat
numpy.reshape
numpy.resize
numpy.searchsorted
numpy.sort
numpy.squeeze
numpy.std
numpy.sum
numpy.swapaxes
numpy.take
numpy.trace
numpy.transpose
numpy.var
Indexing arrays
Internal memory layout of an ndarray
Array attributes
Memory layout
numpy.ndarray.flags
numpy.ndarray.shape
numpy.ndarray.strides
numpy.ndarray.ndim
numpy.ndarray.data
numpy.ndarray.size
numpy.ndarray.itemsize
numpy.ndarray.nbytes
numpy.ndarray.base
Data type
numpy.ndarray.dtype
Other attributes
numpy.ndarray.T
numpy.ndarray.real
numpy.ndarray.imag
numpy.ndarray.flat
numpy.ndarray.ctypes
Array interface
ctypes
foreign function interface
numpy.ndarray.ctypes
Array methods
Array conversion
numpy.ndarray.item
numpy.ndarray.tolist
numpy.ndarray.itemset
numpy.ndarray.setasflat
numpy.ndarray.tostring
numpy.ndarray.tofile
numpy.ndarray.dump
numpy.ndarray.dumps
numpy.ndarray.astype
numpy.ndarray.byteswap
numpy.ndarray.copy
numpy.ndarray.view
numpy.ndarray.getfield
numpy.ndarray.setflags
numpy.ndarray.fill
Shape manipulation
numpy.ndarray.reshape
numpy.ndarray.resize
numpy.ndarray.transpose
numpy.ndarray.swapaxes
numpy.ndarray.flatten
numpy.ndarray.ravel
numpy.ndarray.squeeze
Item selection and manipulation
numpy.ndarray.take
numpy.ndarray.put
numpy.ndarray.repeat
numpy.ndarray.choose
numpy.ndarray.sort
numpy.ndarray.argsort
numpy.ndarray.searchsorted
numpy.ndarray.nonzero
numpy.ndarray.compress
numpy.ndarray.diagonal
Calculation
numpy.ndarray.argmax
numpy.ndarray.min
numpy.ndarray.argmin
numpy.ndarray.ptp
numpy.ndarray.clip
numpy.ndarray.conj
numpy.ndarray.round
numpy.ndarray.trace
numpy.ndarray.sum
numpy.ndarray.cumsum
numpy.ndarray.mean
numpy.ndarray.var
numpy.ndarray.std
numpy.ndarray.prod
numpy.ndarray.cumprod
numpy.ndarray.all
numpy.ndarray.any
Arithmetic and comparison operations
numpy.ndarray.__lt__
numpy.ndarray.__le__
numpy.ndarray.__gt__
numpy.ndarray.__ge__
numpy.ndarray.__eq__
numpy.ndarray.__ne__
numpy.ndarray.__nonzero__
numpy.ndarray.__neg__
numpy.ndarray.__pos__
numpy.ndarray.__abs__
numpy.ndarray.__invert__
numpy.ndarray.__add__
numpy.ndarray.__sub__
numpy.ndarray.__mul__
numpy.ndarray.__div__
numpy.ndarray.__truediv__
numpy.ndarray.__floordiv__
numpy.ndarray.__mod__
numpy.ndarray.__divmod__
numpy.ndarray.__pow__
numpy.ndarray.__lshift__
numpy.ndarray.__rshift__
numpy.ndarray.__and__
numpy.ndarray.__or__
numpy.ndarray.__xor__
numpy.ndarray.__iadd__
numpy.ndarray.__isub__
numpy.ndarray.__imul__
numpy.ndarray.__idiv__
numpy.ndarray.__itruediv__
numpy.ndarray.__ifloordiv__
numpy.ndarray.__imod__
numpy.ndarray.__ipow__
numpy.ndarray.__ilshift__
numpy.ndarray.__irshift__
numpy.ndarray.__iand__
numpy.ndarray.__ior__
numpy.ndarray.__ixor__
Special methods
numpy.ndarray.__copy__
numpy.ndarray.__deepcopy__
numpy.ndarray.__reduce__
numpy.ndarray.__setstate__
numpy.ndarray.__new__
numpy.ndarray.__array__
numpy.ndarray.__array_wrap__
numpy.ndarray.__len__
numpy.ndarray.__getitem__
numpy.ndarray.__setitem__
numpy.ndarray.__getslice__
numpy.ndarray.__setslice__
numpy.ndarray.__contains__
numpy.ndarray.__int__
numpy.ndarray.__long__
numpy.ndarray.__float__
numpy.ndarray.__oct__
numpy.ndarray.__hex__
numpy.ndarray.__str__
numpy.ndarray.__repr__
Scalars
Built-in scalar types
Attributes
numpy.generic.flags
numpy.generic.shape
numpy.generic.strides
numpy.generic.ndim
numpy.generic.data
numpy.generic.size
numpy.generic.itemsize
numpy.generic.base
numpy.generic.dtype
numpy.generic.real
numpy.generic.imag
numpy.generic.flat
numpy.generic.T
numpy.generic.__array_interface__
numpy.generic.__array_struct__
numpy.generic.__array_priority__
numpy.generic.__array_wrap__
Indexing
Methods
numpy.generic
numpy.all
numpy.any
numpy.argmax
numpy.argmin
numpy.argsort
numpy.choose
numpy.clip
numpy.compress
numpy.conj
numpy.copy
numpy.cumprod
numpy.cumsum
numpy.diagonal
numpy.mean
numpy.nonzero
numpy.prod
numpy.ptp
numpy.put
numpy.ravel
numpy.repeat
numpy.reshape
numpy.resize
numpy.searchsorted
numpy.sort
numpy.squeeze
numpy.std
numpy.sum
numpy.swapaxes
numpy.take
numpy.trace
numpy.transpose
numpy.var
numpy.generic.__array__
numpy.generic.__array_wrap__
numpy.generic.squeeze
numpy.generic.byteswap
numpy.generic.__reduce__
numpy.generic.__setstate__
numpy.generic.setflags
Defining new types
Data type objects (
dtype
)
Specifying and constructing data types
numpy.dtype
dtype
Attributes
numpy.dtype.type
numpy.dtype.kind
numpy.dtype.char
numpy.dtype.num
numpy.dtype.str
numpy.dtype.name
numpy.dtype.itemsize
numpy.dtype.byteorder
numpy.dtype.fields
numpy.dtype.names
numpy.dtype.subdtype
numpy.dtype.shape
numpy.dtype.hasobject
numpy.dtype.flags
numpy.dtype.isbuiltin
numpy.dtype.isnative
numpy.dtype.descr
numpy.dtype.alignment
Methods
numpy.dtype.newbyteorder
numpy.dtype.__reduce__
numpy.dtype.__setstate__
Indexing
Basic Slicing
Advanced indexing
Integer
Boolean
Record Access
Flat Iterator indexing
Standard array subclasses
Special attributes and methods
Matrix objects
numpy.matrix.T
numpy.matrix.H
numpy.matrix.I
numpy.matrix.A
numpy.matrix
numpy.all
numpy.any
numpy.argmax
numpy.argmin
numpy.argsort
numpy.choose
numpy.clip
numpy.compress
numpy.conj
numpy.copy
numpy.cumprod
numpy.cumsum
numpy.diagonal
numpy.dot
numpy.mean
numpy.nonzero
numpy.prod
numpy.ptp
numpy.put
numpy.ravel
numpy.repeat
numpy.reshape
numpy.resize
numpy.searchsorted
numpy.sort
numpy.squeeze
numpy.std
numpy.sum
numpy.swapaxes
numpy.take
numpy.trace
numpy.transpose
numpy.var
numpy.asmatrix
numpy.bmat
Memory-mapped file arrays
numpy.memmap
numpy.memmap.flush
Character arrays (
numpy.char
)
numpy.chararray
numpy.argsort
numpy.copy
numpy.nonzero
numpy.put
numpy.ravel
numpy.repeat
numpy.reshape
numpy.resize
numpy.searchsorted
numpy.sort
numpy.split
numpy.squeeze
numpy.swapaxes
numpy.take
numpy.transpose
numpy.core.defchararray.array
Record arrays (
numpy.rec
)
numpy.recarray
numpy.all
numpy.any
numpy.argmax
numpy.argmin
numpy.argsort
numpy.choose
numpy.clip
numpy.compress
numpy.conj
numpy.copy
numpy.cumprod
numpy.cumsum
numpy.diagonal
numpy.dot
numpy.mean
numpy.nonzero
numpy.prod
numpy.ptp
numpy.put
numpy.ravel
numpy.repeat
numpy.reshape
numpy.resize
numpy.searchsorted
numpy.sort
numpy.squeeze
numpy.std
numpy.sum
numpy.swapaxes
numpy.take
numpy.trace
numpy.transpose
numpy.var
numpy.record
numpy.all
numpy.any
numpy.argmax
numpy.argmin
numpy.argsort
numpy.choose
numpy.clip
numpy.compress
numpy.conj
numpy.copy
numpy.cumprod
numpy.cumsum
numpy.diagonal
numpy.mean
numpy.nonzero
numpy.prod
numpy.ptp
numpy.put
numpy.ravel
numpy.repeat
numpy.reshape
numpy.resize
numpy.searchsorted
numpy.sort
numpy.squeeze
numpy.std
numpy.sum
numpy.swapaxes
numpy.take
numpy.trace
numpy.transpose
numpy.var
Masked arrays (
numpy.ma
)
Standard container class
numpy.lib.user_array.container
Array Iterators
Default iteration
Flat iteration
numpy.ndarray.flat
N-dimensional enumeration
numpy.ndenumerate
Iterator for broadcasting
numpy.broadcast
Masked arrays
The
numpy.ma
module
Rationale
What is a masked array?
The
numpy.ma
module
Using numpy.ma
Constructing masked arrays
numpy.ma.array
numpy.ma.masked_array
numpy.ma.asarray
numpy.ma.asanyarray
numpy.ma.fix_invalid
numpy.ma.masked_equal
numpy.ma.masked_greater
numpy.ma.masked_greater_equal
numpy.ma.masked_inside
numpy.ma.masked_invalid
numpy.ma.masked_less
numpy.ma.masked_less_equal
numpy.ma.masked_not_equal
numpy.ma.masked_object
numpy.ma.masked_outside
numpy.ma.masked_values
numpy.ma.masked_where
Accessing the data
Accessing the mask
Accessing only the valid entries
Modifying the mask
Masking an entry
Unmasking an entry
Indexing and slicing
Operations on masked arrays
Examples
Data with a given value representing missing data
Filling in the missing data
Numerical operations
Ignoring extreme values
Constants of the
numpy.ma
module
The
MaskedArray
class
Attributes and properties of masked arrays
numpy.ma.MaskedArray.base
numpy.ma.MaskedArray.ctypes
numpy.ma.MaskedArray.dtype
numpy.ma.MaskedArray.flags
numpy.ma.MaskedArray.itemsize
numpy.ma.MaskedArray.nbytes
numpy.ma.MaskedArray.ndim
numpy.ma.MaskedArray.shape
numpy.ma.MaskedArray.size
numpy.ma.MaskedArray.strides
numpy.ma.MaskedArray.imag
numpy.ma.MaskedArray.real
numpy.ma.MaskedArray.flat
numpy.ma.MaskedArray.__array_priority__
MaskedArray
methods
Conversion
numpy.ma.MaskedArray.__float__
numpy.ma.MaskedArray.__hex__
numpy.ma.MaskedArray.__int__
numpy.ma.MaskedArray.__long__
numpy.ma.MaskedArray.__oct__
numpy.ma.MaskedArray.view
numpy.ma.MaskedArray.astype
numpy.ma.MaskedArray.byteswap
numpy.ma.MaskedArray.compressed
numpy.ma.MaskedArray.filled
numpy.ma.MaskedArray.tofile
numpy.ma.MaskedArray.toflex
numpy.ma.MaskedArray.tolist
numpy.ma.MaskedArray.torecords
numpy.ma.MaskedArray.tostring
Shape manipulation
numpy.ma.MaskedArray.flatten
numpy.ma.MaskedArray.ravel
numpy.ma.MaskedArray.reshape
numpy.ma.MaskedArray.resize
numpy.ma.MaskedArray.squeeze
numpy.ma.MaskedArray.swapaxes
numpy.ma.MaskedArray.transpose
numpy.ma.MaskedArray.T
Item selection and manipulation
numpy.ma.MaskedArray.argmax
numpy.ma.MaskedArray.argmin
numpy.ma.MaskedArray.argsort
numpy.ma.MaskedArray.choose
numpy.ma.MaskedArray.compress
numpy.ma.MaskedArray.diagonal
numpy.ma.MaskedArray.fill
numpy.ma.MaskedArray.item
numpy.ma.MaskedArray.nonzero
numpy.ma.MaskedArray.put
numpy.ma.MaskedArray.repeat
numpy.ma.MaskedArray.searchsorted
numpy.ma.MaskedArray.sort
numpy.ma.MaskedArray.take
Pickling and copy
numpy.ma.MaskedArray.copy
numpy.ma.MaskedArray.dump
numpy.ma.MaskedArray.dumps
Calculations
numpy.ma.MaskedArray.all
numpy.ma.MaskedArray.anom
numpy.ma.MaskedArray.any
numpy.ma.MaskedArray.clip
numpy.ma.MaskedArray.conj
numpy.ma.MaskedArray.conjugate
numpy.ma.MaskedArray.cumprod
numpy.ma.MaskedArray.cumsum
numpy.ma.MaskedArray.max
numpy.ma.MaskedArray.mean
numpy.ma.MaskedArray.min
numpy.ma.MaskedArray.prod
numpy.ma.MaskedArray.product
numpy.ma.MaskedArray.ptp
numpy.ma.MaskedArray.round
numpy.ma.MaskedArray.std
numpy.ma.MaskedArray.sum
numpy.ma.MaskedArray.trace
numpy.ma.MaskedArray.var
Arithmetic and comparison operations
Comparison operators:
numpy.ma.MaskedArray.__lt__
numpy.ma.MaskedArray.__le__
numpy.ma.MaskedArray.__gt__
numpy.ma.MaskedArray.__ge__
numpy.ma.MaskedArray.__eq__
numpy.ma.MaskedArray.__ne__
Truth value of an array (
bool
):
numpy.ma.MaskedArray.__nonzero__
Arithmetic:
numpy.ma.MaskedArray.__abs__
numpy.ma.MaskedArray.__add__
numpy.ma.MaskedArray.__radd__
numpy.ma.MaskedArray.__sub__
numpy.ma.MaskedArray.__rsub__
numpy.ma.MaskedArray.__mul__
numpy.ma.MaskedArray.__rmul__
numpy.ma.MaskedArray.__div__
numpy.ma.MaskedArray.__rdiv__
numpy.ma.MaskedArray.__truediv__
numpy.ma.MaskedArray.__rtruediv__
numpy.ma.MaskedArray.__floordiv__
numpy.ma.MaskedArray.__rfloordiv__
numpy.ma.MaskedArray.__mod__
numpy.ma.MaskedArray.__rmod__
numpy.ma.MaskedArray.__divmod__
numpy.ma.MaskedArray.__rdivmod__
numpy.ma.MaskedArray.__pow__
numpy.ma.MaskedArray.__rpow__
numpy.ma.MaskedArray.__lshift__
numpy.ma.MaskedArray.__rlshift__
numpy.ma.MaskedArray.__rshift__
numpy.ma.MaskedArray.__rrshift__
numpy.ma.MaskedArray.__and__
numpy.ma.MaskedArray.__rand__
numpy.ma.MaskedArray.__or__
numpy.ma.MaskedArray.__ror__
numpy.ma.MaskedArray.__xor__
numpy.ma.MaskedArray.__rxor__
Arithmetic, in-place:
numpy.ma.MaskedArray.__iadd__
numpy.ma.MaskedArray.__isub__
numpy.ma.MaskedArray.__imul__
numpy.ma.MaskedArray.__idiv__
numpy.ma.MaskedArray.__itruediv__
numpy.ma.MaskedArray.__ifloordiv__
numpy.ma.MaskedArray.__imod__
numpy.ma.MaskedArray.__ipow__
numpy.ma.MaskedArray.__ilshift__
numpy.ma.MaskedArray.__irshift__
numpy.ma.MaskedArray.__iand__
numpy.ma.MaskedArray.__ior__
numpy.ma.MaskedArray.__ixor__
Representation
numpy.ma.MaskedArray.__repr__
numpy.ma.MaskedArray.__str__
numpy.ma.MaskedArray.ids
numpy.ma.MaskedArray.iscontiguous
Special methods
numpy.ma.MaskedArray.__copy__
numpy.ma.MaskedArray.__deepcopy__
numpy.ma.MaskedArray.__getstate__
numpy.ma.MaskedArray.__reduce__
numpy.ma.MaskedArray.__setstate__
numpy.ma.MaskedArray.__new__
numpy.ma.MaskedArray.__array__
numpy.ma.MaskedArray.__array_wrap__
numpy.ma.MaskedArray.__len__
numpy.ma.MaskedArray.__getitem__
numpy.ma.MaskedArray.__setitem__
numpy.ma.MaskedArray.__delitem__
numpy.ma.MaskedArray.__getslice__
numpy.ma.MaskedArray.__setslice__
numpy.ma.MaskedArray.__contains__
Specific methods
Handling the mask
numpy.ma.MaskedArray.__setmask__
numpy.ma.MaskedArray.harden_mask
numpy.ma.MaskedArray.soften_mask
numpy.ma.MaskedArray.unshare_mask
numpy.ma.MaskedArray.shrink_mask
Handling the
fill_value
numpy.ma.MaskedArray.get_fill_value
numpy.ma.MaskedArray.set_fill_value
Counting the missing elements
numpy.ma.MaskedArray.count
Masked array operations
Constants
numpy.ma.MaskType
Creation
From existing data
numpy.ma.masked_array
numpy.ma.array
numpy.ma.copy
numpy.ma.frombuffer
numpy.ma.fromfunction
numpy.ma.MaskedArray.copy
Ones and zeros
numpy.ma.empty
numpy.ma.empty_like
numpy.ma.masked_all
numpy.ma.masked_all_like
numpy.ma.ones
numpy.ma.zeros
Inspecting the array
numpy.ma.all
numpy.ma.any
numpy.ma.count
numpy.ma.count_masked
numpy.ma.getmask
numpy.ma.getmaskarray
numpy.ma.getdata
numpy.ma.nonzero
numpy.ma.shape
numpy.ma.size
numpy.ma.MaskedArray.data
numpy.ma.MaskedArray.mask
numpy.ma.MaskedArray.recordmask
numpy.ma.MaskedArray.all
numpy.ma.MaskedArray.any
numpy.ma.MaskedArray.count
numpy.ma.MaskedArray.nonzero
numpy.ma.shape
numpy.ma.size
Manipulating a MaskedArray
Changing the shape
numpy.ma.ravel
numpy.ma.reshape
numpy.ma.resize
numpy.ma.MaskedArray.flatten
numpy.ma.MaskedArray.ravel
numpy.ma.MaskedArray.reshape
numpy.ma.MaskedArray.resize
Modifying axes
numpy.ma.swapaxes
numpy.ma.transpose
numpy.ma.MaskedArray.swapaxes
numpy.ma.MaskedArray.transpose
Changing the number of dimensions
numpy.ma.atleast_1d
numpy.ma.atleast_2d
numpy.ma.atleast_3d
numpy.ma.expand_dims
numpy.ma.squeeze
numpy.ma.MaskedArray.squeeze
numpy.ma.column_stack
numpy.ma.concatenate
numpy.ma.dstack
numpy.ma.hstack
numpy.ma.hsplit
numpy.ma.mr
numpy.ma.row_stack
numpy.ma.vstack
Joining arrays
numpy.ma.column_stack
numpy.ma.concatenate
numpy.ma.dstack
numpy.ma.hstack
numpy.ma.vstack
Operations on masks
Creating a mask
numpy.ma.make_mask
numpy.ma.make_mask_none
numpy.ma.mask_or
numpy.ma.make_mask_descr
Accessing a mask
numpy.ma.getmask
numpy.ma.getmaskarray
numpy.ma.masked_array.mask
Finding masked data
numpy.ma.flatnotmasked_contiguous
numpy.ma.flatnotmasked_edges
numpy.ma.notmasked_contiguous
numpy.ma.notmasked_edges
Modifying a mask
numpy.ma.mask_cols
numpy.ma.mask_or
numpy.ma.mask_rowcols
numpy.ma.mask_rows
numpy.ma.harden_mask
numpy.ma.soften_mask
numpy.ma.MaskedArray.harden_mask
numpy.ma.MaskedArray.soften_mask
numpy.ma.MaskedArray.shrink_mask
numpy.ma.MaskedArray.unshare_mask
Conversion operations
> to a masked array
numpy.ma.asarray
numpy.ma.asanyarray
numpy.ma.fix_invalid
numpy.ma.masked_equal
numpy.ma.masked_greater
numpy.ma.masked_greater_equal
numpy.ma.masked_inside
numpy.ma.masked_invalid
numpy.ma.masked_less
numpy.ma.masked_less_equal
numpy.ma.masked_not_equal
numpy.ma.masked_object
numpy.ma.masked_outside
numpy.ma.masked_values
numpy.ma.masked_where
> to a ndarray
numpy.ma.compress_cols
numpy.ma.compress_rowcols
numpy.ma.compress_rows
numpy.ma.compressed
numpy.ma.filled
numpy.ma.MaskedArray.compressed
numpy.ma.MaskedArray.filled
> to another object
numpy.ma.MaskedArray.tofile
numpy.ma.MaskedArray.tolist
numpy.ma.MaskedArray.torecords
numpy.ma.MaskedArray.tostring
Pickling and unpickling
numpy.ma.dump
numpy.ma.dumps
numpy.ma.load
numpy.ma.loads
Filling a masked array
numpy.ma.common_fill_value
numpy.ma.default_fill_value
numpy.ma.maximum_fill_value
numpy.ma.maximum_fill_value
numpy.ma.set_fill_value
numpy.ma.MaskedArray.get_fill_value
numpy.ma.MaskedArray.set_fill_value
numpy.ma.MaskedArray.fill_value
Masked arrays arithmetics
Arithmetics
numpy.ma.anom
numpy.ma.anomalies
numpy.ma.average
numpy.ma.conjugate
numpy.ma.corrcoef
numpy.ma.cov
numpy.ma.cumsum
numpy.ma.cumprod
numpy.ma.mean
numpy.ma.median
numpy.ma.power
numpy.ma.prod
numpy.ma.std
numpy.ma.sum
numpy.ma.var
numpy.ma.MaskedArray.anom
numpy.ma.MaskedArray.cumprod
numpy.ma.MaskedArray.cumsum
numpy.ma.MaskedArray.mean
numpy.ma.MaskedArray.prod
numpy.ma.MaskedArray.std
numpy.ma.MaskedArray.sum
numpy.ma.MaskedArray.var
Minimum/maximum
numpy.ma.argmax
numpy.ma.argmin
numpy.ma.max
numpy.ma.min
numpy.ma.ptp
numpy.ma.MaskedArray.argmax
numpy.ma.MaskedArray.argmin
numpy.ma.MaskedArray.max
numpy.ma.MaskedArray.min
numpy.ma.MaskedArray.ptp
Sorting
numpy.ma.argsort
numpy.ma.sort
numpy.ma.MaskedArray.argsort
numpy.ma.MaskedArray.sort
Algebra
numpy.ma.diag
numpy.ma.dot
numpy.ma.identity
numpy.ma.inner
numpy.ma.innerproduct
numpy.ma.outer
numpy.ma.outerproduct
numpy.ma.trace
numpy.ma.transpose
numpy.ma.MaskedArray.trace
numpy.ma.MaskedArray.transpose
Polynomial fit
numpy.ma.vander
numpy.ma.polyfit
Clipping and rounding
numpy.ma.around
numpy.ma.clip
numpy.ma.round
numpy.ma.MaskedArray.clip
numpy.ma.MaskedArray.round
Miscellanea
numpy.ma.allequal
numpy.ma.allclose
numpy.ma.apply_along_axis
numpy.ma.arange
numpy.ma.choose
numpy.ma.ediff1d
numpy.ma.indices
numpy.ma.where
The Array Interface
Python side
C-struct access
Type description examples
Differences with Array interface (Version 2)
Universal functions (
ufunc
)
Broadcasting
Output type determination
Use of internal buffers
numpy.setbufsize
Error handling
numpy.seterr
numpy.seterrcall
Casting Rules
ufunc
Optional keyword arguments
Attributes
numpy.ufunc.nin
numpy.ufunc.nout
numpy.ufunc.nargs
numpy.ufunc.ntypes
numpy.ufunc.types
numpy.ufunc.identity
Methods
numpy.ufunc.reduce
numpy.ufunc.accumulate
numpy.ufunc.reduceat
numpy.ufunc.outer
Available ufuncs
Math operations
Trigonometric functions
Bit-twiddling functions
Comparison functions
Floating functions
Routines
Array creation routines
Ones and zeros
numpy.empty
numpy.empty_like
numpy.eye
numpy.identity
numpy.ones
numpy.ones_like
numpy.zeros
numpy.zeros_like
From existing data
numpy.array
numpy.asarray
numpy.asanyarray
numpy.ascontiguousarray
numpy.asmatrix
numpy.copy
numpy.frombuffer
numpy.fromfile
numpy.fromfunction
numpy.fromiter
numpy.fromstring
numpy.loadtxt
Creating record arrays (
numpy.rec
)
numpy.core.records.array
numpy.core.records.fromarrays
numpy.core.records.fromrecords
numpy.core.records.fromstring
numpy.core.records.fromfile
Creating character arrays (
numpy.char
)
numpy.core.defchararray.array
numpy.core.defchararray.asarray
Numerical ranges
numpy.arange
numpy.linspace
numpy.logspace
numpy.meshgrid
numpy.mgrid
numpy.ogrid
Building matrices
numpy.diag
numpy.diagflat
numpy.tri
numpy.tril
numpy.triu
numpy.vander
The Matrix class
numpy.mat
numpy.bmat
Array manipulation routines
Changing array shape
numpy.reshape
numpy.ravel
numpy.ndarray.flat
numpy.ndarray.flatten
Transpose-like operations
numpy.rollaxis
numpy.swapaxes
numpy.ndarray.T
numpy.transpose
Changing number of dimensions
numpy.atleast_1d
numpy.atleast_2d
numpy.atleast_3d
numpy.broadcast
numpy.broadcast_arrays
numpy.expand_dims
numpy.squeeze
Changing kind of array
numpy.asarray
numpy.asanyarray
numpy.asmatrix
numpy.asfarray
numpy.asfortranarray
numpy.asscalar
numpy.require
Joining arrays
numpy.column_stack
numpy.concatenate
numpy.dstack
numpy.hstack
numpy.vstack
Splitting arrays
numpy.array_split
numpy.dsplit
numpy.hsplit
numpy.split
numpy.vsplit
Tiling arrays
numpy.tile
numpy.repeat
Adding and removing elements
numpy.delete
numpy.insert
numpy.append
numpy.resize
numpy.trim_zeros
numpy.unique
Rearranging elements
numpy.fliplr
numpy.flipud
numpy.reshape
numpy.roll
numpy.rot90
Indexing routines
Generating index arrays
numpy.c
numpy.r
numpy.s
numpy.nonzero
numpy.where
numpy.indices
numpy.ix
numpy.ogrid
numpy.ravel_multi_index
numpy.unravel_index
numpy.diag_indices
numpy.diag_indices_from
numpy.mask_indices
numpy.tril_indices
numpy.tril_indices_from
numpy.triu_indices
numpy.triu_indices_from
Indexing-like operations
numpy.take
numpy.choose
numpy.compress
numpy.diag
numpy.diagonal
numpy.select
Inserting data into arrays
numpy.place
numpy.put
numpy.putmask
numpy.fill_diagonal
Iterating over arrays
numpy.nditer
numpy.copy
numpy.ndenumerate
numpy.ndindex
numpy.flatiter
numpy.copy
Data type routines
numpy.can_cast
numpy.promote_types
numpy.min_scalar_type
numpy.result_type
numpy.common_type
numpy.obj2sctype
Creating data types
numpy.dtype
numpy.format_parser
Data type information
numpy.finfo
numpy.iinfo
numpy.MachAr
Data type testing
numpy.issctype
numpy.issubdtype
numpy.issubsctype
numpy.issubclass
numpy.find_common_type
Miscellaneous
numpy.typename
numpy.sctype2char
numpy.mintypecode
Input and output
NPZ files
numpy.load
numpy.save
numpy.savez
Text files
numpy.loadtxt
numpy.savetxt
numpy.genfromtxt
numpy.fromregex
numpy.fromstring
numpy.ndarray.tofile
numpy.ndarray.tolist
String formatting
numpy.array_repr
numpy.array_str
Memory mapping files
numpy.memmap
Text formatting options
numpy.set_printoptions
numpy.get_printoptions
numpy.set_string_function
Base-n representations
numpy.binary_repr
numpy.base_repr
Data sources
numpy.DataSource
Discrete Fourier Transform (
numpy.fft
)
Standard FFTs
numpy.fft.fft
numpy.fft.ifft
numpy.fft.fft2
numpy.fft.ifft2
numpy.fft.fftn
numpy.fft.ifftn
Real FFTs
numpy.fft.rfft
numpy.fft.irfft
numpy.fft.rfft2
numpy.fft.irfft2
numpy.fft.rfftn
numpy.fft.irfftn
Hermitian FFTs
numpy.fft.hfft
numpy.fft.ihfft
Helper routines
numpy.fft.fftfreq
numpy.fft.fftshift
numpy.fft.ifftshift
Background information
Real and Hermitian transforms
References
Examples
Linear algebra (
numpy.linalg
)
Matrix and vector products
numpy.dot
numpy.vdot
numpy.inner
numpy.outer
numpy.tensordot
numpy.einsum
numpy.linalg.matrix_power
numpy.kron
Decompositions
numpy.linalg.cholesky
numpy.linalg.qr
numpy.linalg.svd
Matrix eigenvalues
numpy.linalg.eig
numpy.linalg.eigh
numpy.linalg.eigvals
numpy.linalg.eigvalsh
Norms and other numbers
numpy.linalg.norm
numpy.linalg.cond
numpy.linalg.det
numpy.linalg.slogdet
numpy.trace
Solving equations and inverting matrices
numpy.linalg.solve
numpy.linalg.tensorsolve
numpy.linalg.lstsq
numpy.linalg.inv
numpy.linalg.pinv
numpy.linalg.tensorinv
Exceptions
numpy.linalg.LinAlgError
Random sampling (
numpy.random
)
Simple random data
numpy.random.rand
numpy.random.randn
numpy.random.randint
numpy.random.random_integers
numpy.random.random_sample
numpy.random.bytes
Permutations
numpy.random.shuffle
numpy.random.permutation
Distributions
numpy.random.beta
numpy.random.binomial
numpy.random.chisquare
numpy.random.mtrand.dirichlet
numpy.random.exponential
numpy.random.f
numpy.random.gamma
numpy.random.geometric
numpy.random.gumbel
numpy.random.hypergeometric
numpy.random.laplace
numpy.random.logistic
numpy.random.lognormal
numpy.random.logseries
numpy.random.multinomial
numpy.random.multivariate_normal
numpy.random.negative_binomial
numpy.random.noncentral_chisquare
numpy.random.noncentral_f
numpy.random.normal
numpy.random.pareto
numpy.random.poisson
numpy.random.power
numpy.random.rayleigh
numpy.random.standard_cauchy
numpy.random.standard_exponential
numpy.random.standard_gamma
numpy.random.standard_normal
numpy.random.standard_t
numpy.random.triangular
numpy.random.uniform
numpy.random.vonmises
numpy.random.wald
numpy.random.weibull
numpy.random.zipf
Random generator
numpy.random.mtrand.RandomState
numpy.random.mtrand.dirichlet
numpy.random.seed
numpy.random.get_state
numpy.random.set_state
Sorting, searching, and counting
Sorting
numpy.sort
numpy.lexsort
numpy.argsort
numpy.ndarray.sort
numpy.msort
numpy.sort_complex
Searching
numpy.argmax
numpy.nanargmax
numpy.argmin
numpy.nanargmin
numpy.argwhere
numpy.nonzero
numpy.flatnonzero
numpy.where
numpy.searchsorted
numpy.extract
Counting
numpy.count_nonzero
Logic functions
Truth value testing
numpy.all
numpy.any
Array contents
numpy.isfinite
numpy.isinf
numpy.isnan
numpy.isneginf
numpy.isposinf
Array type testing
numpy.iscomplex
numpy.iscomplexobj
numpy.isfortran
numpy.isreal
numpy.isrealobj
numpy.isscalar
Logical operations
numpy.logical_and
numpy.logical_or
numpy.logical_not
numpy.logical_xor
Comparison
numpy.allclose
numpy.array_equal
numpy.array_equiv
numpy.greater
numpy.greater_equal
numpy.less
numpy.less_equal
numpy.equal
numpy.not_equal
Binary operations
Elementwise bit operations
numpy.bitwise_and
numpy.bitwise_or
numpy.bitwise_xor
numpy.invert
numpy.left_shift
numpy.right_shift
Bit packing
numpy.packbits
numpy.unpackbits
Output formatting
numpy.binary_repr
Statistics
Extremal values
numpy.amin
numpy.amax
numpy.nanmax
numpy.nanmin
numpy.ptp
Averages and variances
numpy.average
numpy.mean
numpy.median
numpy.std
numpy.var
Correlating
numpy.corrcoef
numpy.correlate
numpy.cov
Histograms
numpy.histogram
numpy.histogram2d
numpy.histogramdd
numpy.bincount
numpy.digitize
Mathematical functions
Trigonometric functions
numpy.sin
numpy.cos
numpy.tan
numpy.arcsin
numpy.arccos
numpy.arctan
numpy.hypot
numpy.arctan2
numpy.degrees
numpy.radians
numpy.unwrap
numpy.deg2rad
numpy.rad2deg
Hyperbolic functions
numpy.sinh
numpy.cosh
numpy.tanh
numpy.arcsinh
numpy.arccosh
numpy.arctanh
Rounding
numpy.around
numpy.round
numpy.rint
numpy.fix
numpy.floor
numpy.ceil
numpy.trunc
Sums, products, differences
numpy.prod
numpy.sum
numpy.nansum
numpy.cumprod
numpy.cumsum
numpy.diff
numpy.ediff1d
numpy.gradient
numpy.cross
numpy.trapz
Exponents and logarithms
numpy.exp
numpy.expm1
numpy.exp2
numpy.log
numpy.log10
numpy.log2
numpy.log1p
numpy.logaddexp
numpy.logaddexp2
Other special functions
numpy.i0
numpy.sinc
Floating point routines
numpy.signbit
numpy.copysign
numpy.frexp
numpy.ldexp
Arithmetic operations
numpy.add
numpy.reciprocal
numpy.negative
numpy.multiply
numpy.divide
numpy.power
numpy.subtract
numpy.true_divide
numpy.floor_divide
numpy.fmod
numpy.mod
numpy.modf
numpy.remainder
Handling complex numbers
numpy.angle
numpy.real
numpy.imag
numpy.conj
Miscellaneous
numpy.convolve
numpy.clip
numpy.sqrt
numpy.square
numpy.absolute
numpy.fabs
numpy.sign
numpy.maximum
numpy.minimum
numpy.nan_to_num
numpy.real_if_close
numpy.interp
Functional programming
numpy.apply_along_axis
numpy.apply_over_axes
numpy.vectorize
numpy.frompyfunc
numpy.piecewise
Polynomials
Basics
numpy.poly1d
numpy.polyval
numpy.poly
numpy.roots
Fitting
numpy.polyfit
Calculus
numpy.polyder
numpy.polyint
Arithmetic
numpy.polyadd
numpy.polydiv
numpy.polymul
numpy.polysub
Warnings
numpy.RankWarning
Financial functions
Simple financial functions
numpy.fv
numpy.pv
numpy.npv
numpy.pmt
numpy.ppmt
numpy.ipmt
numpy.irr
numpy.mirr
numpy.nper
numpy.rate
Set routines
Making proper sets
numpy.unique
Boolean operations
numpy.in1d
numpy.intersect1d
numpy.setdiff1d
numpy.setxor1d
numpy.union1d
Window functions
Various windows
numpy.bartlett
numpy.blackman
numpy.hamming
numpy.hanning
numpy.kaiser
Floating point error handling
Setting and getting error handling
numpy.seterr
numpy.geterr
numpy.seterrcall
numpy.geterrcall
numpy.errstate
Internal functions
numpy.seterrobj
numpy.geterrobj
Masked array operations
Constants
numpy.ma.MaskType
Creation
From existing data
numpy.ma.masked_array
numpy.ma.array
numpy.ma.copy
numpy.ma.frombuffer
numpy.ma.fromfunction
numpy.ma.MaskedArray.copy
Ones and zeros
numpy.ma.empty
numpy.ma.empty_like
numpy.ma.masked_all
numpy.ma.masked_all_like
numpy.ma.ones
numpy.ma.zeros
Inspecting the array
numpy.ma.all
numpy.ma.any
numpy.ma.count
numpy.ma.count_masked
numpy.ma.getmask
numpy.ma.getmaskarray
numpy.ma.getdata
numpy.ma.nonzero
numpy.ma.shape
numpy.ma.size
numpy.ma.MaskedArray.data
numpy.ma.MaskedArray.mask
numpy.ma.MaskedArray.recordmask
numpy.ma.MaskedArray.all
numpy.ma.MaskedArray.any
numpy.ma.MaskedArray.count
numpy.ma.MaskedArray.nonzero
numpy.ma.shape
numpy.ma.size
Manipulating a MaskedArray
Changing the shape
numpy.ma.ravel
numpy.ma.reshape
numpy.ma.resize
numpy.ma.MaskedArray.flatten
numpy.ma.MaskedArray.ravel
numpy.ma.MaskedArray.reshape
numpy.ma.MaskedArray.resize
Modifying axes
numpy.ma.swapaxes
numpy.ma.transpose
numpy.ma.MaskedArray.swapaxes
numpy.ma.MaskedArray.transpose
Changing the number of dimensions
numpy.ma.atleast_1d
numpy.ma.atleast_2d
numpy.ma.atleast_3d
numpy.ma.expand_dims
numpy.ma.squeeze
numpy.ma.MaskedArray.squeeze
numpy.ma.column_stack
numpy.ma.concatenate
numpy.ma.dstack
numpy.ma.hstack
numpy.ma.hsplit
numpy.ma.mr
numpy.ma.row_stack
numpy.ma.vstack
Joining arrays
numpy.ma.column_stack
numpy.ma.concatenate
numpy.ma.dstack
numpy.ma.hstack
numpy.ma.vstack
Operations on masks
Creating a mask
numpy.ma.make_mask
numpy.ma.make_mask_none
numpy.ma.mask_or
numpy.ma.make_mask_descr
Accessing a mask
numpy.ma.getmask
numpy.ma.getmaskarray
numpy.ma.masked_array.mask
Finding masked data
numpy.ma.flatnotmasked_contiguous
numpy.ma.flatnotmasked_edges
numpy.ma.notmasked_contiguous
numpy.ma.notmasked_edges
Modifying a mask
numpy.ma.mask_cols
numpy.ma.mask_or
numpy.ma.mask_rowcols
numpy.ma.mask_rows
numpy.ma.harden_mask
numpy.ma.soften_mask
numpy.ma.MaskedArray.harden_mask
numpy.ma.MaskedArray.soften_mask
numpy.ma.MaskedArray.shrink_mask
numpy.ma.MaskedArray.unshare_mask
Conversion operations
> to a masked array
numpy.ma.asarray
numpy.ma.asanyarray
numpy.ma.fix_invalid
numpy.ma.masked_equal
numpy.ma.masked_greater
numpy.ma.masked_greater_equal
numpy.ma.masked_inside
numpy.ma.masked_invalid
numpy.ma.masked_less
numpy.ma.masked_less_equal
numpy.ma.masked_not_equal
numpy.ma.masked_object
numpy.ma.masked_outside
numpy.ma.masked_values
numpy.ma.masked_where
> to a ndarray
numpy.ma.compress_cols
numpy.ma.compress_rowcols
numpy.ma.compress_rows
numpy.ma.compressed
numpy.ma.filled
numpy.ma.MaskedArray.compressed
numpy.ma.MaskedArray.filled
> to another object
numpy.ma.MaskedArray.tofile
numpy.ma.MaskedArray.tolist
numpy.ma.MaskedArray.torecords
numpy.ma.MaskedArray.tostring
Pickling and unpickling
numpy.ma.dump
numpy.ma.dumps
numpy.ma.load
numpy.ma.loads
Filling a masked array
numpy.ma.common_fill_value
numpy.ma.default_fill_value
numpy.ma.maximum_fill_value
numpy.ma.maximum_fill_value
numpy.ma.set_fill_value
numpy.ma.MaskedArray.get_fill_value
numpy.ma.MaskedArray.set_fill_value
numpy.ma.MaskedArray.fill_value
Masked arrays arithmetics
Arithmetics
numpy.ma.anom
numpy.ma.anomalies
numpy.ma.average
numpy.ma.conjugate
numpy.ma.corrcoef
numpy.ma.cov
numpy.ma.cumsum
numpy.ma.cumprod
numpy.ma.mean
numpy.ma.median
numpy.ma.power
numpy.ma.prod
numpy.ma.std
numpy.ma.sum
numpy.ma.var
numpy.ma.MaskedArray.anom
numpy.ma.MaskedArray.cumprod
numpy.ma.MaskedArray.cumsum
numpy.ma.MaskedArray.mean
numpy.ma.MaskedArray.prod
numpy.ma.MaskedArray.std
numpy.ma.MaskedArray.sum
numpy.ma.MaskedArray.var
Minimum/maximum
numpy.ma.argmax
numpy.ma.argmin
numpy.ma.max
numpy.ma.min
numpy.ma.ptp
numpy.ma.MaskedArray.argmax
numpy.ma.MaskedArray.argmin
numpy.ma.MaskedArray.max
numpy.ma.MaskedArray.min
numpy.ma.MaskedArray.ptp
Sorting
numpy.ma.argsort
numpy.ma.sort
numpy.ma.MaskedArray.argsort
numpy.ma.MaskedArray.sort
Algebra
numpy.ma.diag
numpy.ma.dot
numpy.ma.identity
numpy.ma.inner
numpy.ma.innerproduct
numpy.ma.outer
numpy.ma.outerproduct
numpy.ma.trace
numpy.ma.transpose
numpy.ma.MaskedArray.trace
numpy.ma.MaskedArray.transpose
Polynomial fit
numpy.ma.vander
numpy.ma.polyfit
Clipping and rounding
numpy.ma.around
numpy.ma.clip
numpy.ma.round
numpy.ma.MaskedArray.clip
numpy.ma.MaskedArray.round
Miscellanea
numpy.ma.allequal
numpy.ma.allclose
numpy.ma.apply_along_axis
numpy.ma.arange
numpy.ma.choose
numpy.ma.ediff1d
numpy.ma.indices
numpy.ma.where
Numpy-specific help functions
Finding help
numpy.lookfor
Reading help
numpy.info
numpy.source
Miscellaneous routines
Buffer objects
numpy.getbuffer
numpy.newbuffer
Performance tuning
numpy.alterdot
numpy.restoredot
numpy.setbufsize
numpy.getbufsize
Test Support (
numpy.testing
)
Asserts
numpy.testing.assert_almost_equal
numpy.testing.assert_approx_equal
numpy.testing.assert_array_almost_equal
numpy.testing.assert_array_equal
numpy.testing.assert_array_less
numpy.testing.assert_equal
numpy.testing.assert_raises
numpy.testing.assert_warns
numpy.testing.assert_string_equal
Decorators
numpy.testing.decorators.deprecated
numpy.testing.decorators.knownfailureif
numpy.testing.decorators.setastest
numpy.testing.decorators.skipif
numpy.testing.decorators.slow
numpy.testing.decorate_methods
Test Running
numpy.testing.Tester
numpy.testing.run_module_suite
numpy.testing.rundocs
Mathematical functions with automatic domain (
numpy.emath
)
Matrix library (
numpy.matlib
)
Optionally Scipy-accelerated routines (
numpy.dual
)
Linear algebra
FFT
Other
Numarray compatibility (
numpy.numarray
)
Old Numeric compatibility (
numpy.oldnumeric
)
C-Types Foreign Function Interface (
numpy.ctypeslib
)
String operations
String operations
numpy.core.defchararray.add
numpy.core.defchararray.multiply
numpy.core.defchararray.mod
numpy.core.defchararray.capitalize
numpy.core.defchararray.center
numpy.core.defchararray.decode
numpy.core.defchararray.encode
numpy.core.defchararray.join
numpy.core.defchararray.ljust
numpy.core.defchararray.lower
numpy.core.defchararray.lstrip
numpy.core.defchararray.partition
numpy.core.defchararray.replace
numpy.core.defchararray.rjust
numpy.core.defchararray.rpartition
numpy.core.defchararray.rsplit
numpy.core.defchararray.rstrip
numpy.core.defchararray.split
numpy.core.defchararray.splitlines
numpy.core.defchararray.strip
numpy.core.defchararray.swapcase
numpy.core.defchararray.title
numpy.core.defchararray.translate
numpy.core.defchararray.upper
numpy.core.defchararray.zfill
Comparison
numpy.core.defchararray.equal
numpy.core.defchararray.not_equal
numpy.core.defchararray.greater_equal
numpy.core.defchararray.less_equal
numpy.core.defchararray.greater
numpy.core.defchararray.less
String information
numpy.core.defchararray.count
numpy.core.defchararray.find
numpy.core.defchararray.index
numpy.core.defchararray.isalpha
numpy.core.defchararray.isdecimal
numpy.core.defchararray.isdigit
numpy.core.defchararray.islower
numpy.core.defchararray.isnumeric
numpy.core.defchararray.isspace
numpy.core.defchararray.istitle
numpy.core.defchararray.isupper
numpy.core.defchararray.rfind
numpy.core.defchararray.rindex
numpy.core.defchararray.startswith
Convenience class
numpy.core.defchararray.chararray
numpy.core.defchararray.count
numpy.core.defchararray.decode
numpy.core.defchararray.encode
numpy.core.defchararray.find
numpy.core.defchararray.index
numpy.core.defchararray.isalpha
numpy.core.defchararray.isdecimal
numpy.core.defchararray.isdigit
numpy.core.defchararray.islower
numpy.core.defchararray.isnumeric
numpy.core.defchararray.isspace
numpy.core.defchararray.istitle
numpy.core.defchararray.isupper
numpy.core.defchararray.join
numpy.core.defchararray.ljust
numpy.core.defchararray.lower
numpy.core.defchararray.lstrip
numpy.core.defchararray.replace
numpy.core.defchararray.rfind
numpy.core.defchararray.rindex
numpy.core.defchararray.rjust
numpy.core.defchararray.rsplit
numpy.core.defchararray.rstrip
numpy.core.defchararray.split
numpy.core.defchararray.splitlines
numpy.core.defchararray.startswith
numpy.core.defchararray.strip
numpy.core.defchararray.swapcase
numpy.core.defchararray.title
numpy.core.defchararray.translate
numpy.core.defchararray.upper
numpy.core.defchararray.zfill
Packaging (
numpy.distutils
)
Modules in
numpy.distutils
misc_util
numpy.distutils.misc_util.get_numpy_include_dirs
numpy.distutils.misc_util.dict_append
numpy.distutils.misc_util.appendpath
numpy.distutils.misc_util.allpath
numpy.distutils.misc_util.dot_join
numpy.distutils.misc_util.generate_config_py
numpy.distutils.misc_util.get_cmd
numpy.distutils.misc_util.terminal_has_colors
numpy.distutils.misc_util.red_text
numpy.distutils.misc_util.green_text
numpy.distutils.misc_util.yellow_text
numpy.distutils.misc_util.blue_text
numpy.distutils.misc_util.cyan_text
numpy.distutils.misc_util.cyg2win32
numpy.distutils.misc_util.all_strings
numpy.distutils.misc_util.has_f_sources
numpy.distutils.misc_util.has_cxx_sources
numpy.distutils.misc_util.filter_sources
numpy.distutils.misc_util.get_dependencies
numpy.distutils.misc_util.is_local_src_dir
numpy.distutils.misc_util.get_ext_source_files
numpy.distutils.misc_util.get_script_files
Other modules
numpy.distutils.system_info.get_info
numpy.distutils.system_info.get_standard_file
numpy.distutils.cpuinfo.cpu
numpy.distutils.log.set_verbosity
numpy.distutils.exec_command
Building Installable C libraries
npy-pkg-config files
Reusing a C library from another package
Conversion of
.src
files
Fortran files
Named repeat rule
Short repeat rule
Pre-defined names
Other files
Numpy C-API
Python Types and C-Structures
New Python Types Defined
PyArray_Type
PyArrayDescr_Type
PyUFunc_Type
PyArrayIter_Type
PyArrayMultiIter_Type
PyArrayNeighborhoodIter_Type
PyArrayFlags_Type
ScalarArrayTypes
Other C-Structures
PyArray_Dims
PyArray_Chunk
PyArrayInterface
Internally used structures
System configuration
Data type sizes
Platform information
Data Type API
Enumerated Types
Defines
Max and min values for integers
Number of bits in data types
Bit-width references to enumerated typenums
Integer that can hold a pointer
C-type names
Boolean
(Un)Signed Integer
(Complex) Floating point
Bit-width names
Printf Formatting
Array API
Array structure and data access
Data access
Creating arrays
From scratch
From other objects
Dealing with types
General check of Python Type
Data-type checking
Converting data types
New data types
Special functions for PyArray_OBJECT
Array flags
Basic Array Flags
Combinations of array flags
Flag-like constants
Flag checking
Array method alternative API
Conversion
Shape Manipulation
Item selection and manipulation
Calculation
Functions
Array Functions
Other functions
Array Iterators
Broadcasting (multi-iterators)
Neighborhood iterator
Array Scalars
Data-type descriptors
Conversion Utilities
For use with
PyArg_ParseTuple
Other conversions
Miscellaneous
Importing the API
Checking the API Version
Internal Flexibility
Memory management
Threading support
Group 1
Group 2
Priority
Default buffers
Other constants
Miscellaneous Macros
Enumerated Types
Array Iterator API
Array Iterator
Converting from Previous NumPy Iterators
Simple Iteration Example
Simple Multi-Iteration Example
Iterator Data Types
Construction and Destruction
Functions For Iteration
UFunc API
Constants
Macros
Functions
Generic functions
Importing the API
Generalized Universal Function API
Definitions
Details of Signature
C-API for implementing Elementary Functions
Numpy core libraries
Numpy core math library
Floating point classification
Useful math constants
Low-level floating point manipulation
Complex functions
Linking against the core math library in an extension
Half-precision functions
Numpy internals
Numpy C Code Explanations
Memory model
Data-type encapsulation
N-D Iterators
Broadcasting
Array Scalars
Advanced (“Fancy”) Indexing
Fancy-indexing check
Fancy-indexing implementation
Creating the mapping object
Binding the mapping object
Getting (or Setting)
Universal Functions
Setup
Function call
One Loop
Strided Loop
Buffered Loop
Final output manipulation
Methods
Setup
Reduce
Accumulate
Reduceat
Internal organization of numpy arrays
Multidimensional Array Indexing Order Issues
Numpy and SWIG
Numpy.i: a SWIG Interface File for NumPy
Introduction
Using numpy.i
Available Typemaps
Input Arrays
In-Place Arrays
Argout Arrays
Argoutview Arrays
Output Arrays
Other Common Types: bool
Other Common Types: complex
NumPy Array Scalars and SWIG
Why is There a Second File?
Helper Functions
Macros
Routines
Beyond the Provided Typemaps
A Common Example
Other Situations
A Final Note
Summary
Testing the numpy.i Typemaps
Introduction
Testing Organization
Testing Header Files
Testing Source Files
Testing SWIG Interface Files
Testing Python Scripts
Acknowledgements
Contributing to Numpy
Working with
NumPy
source code
Introduction
Install git
Overview
In detail
Following the latest source
Get the local copy of the code
Updating the code
Making a patch
Making patches
Overview
In detail
Moving from patching to development
Git for development
Getting started with Git development
Basic Git setup
Making your own copy (fork) of NumPy
Set up and configure a github account
Create your own forked copy of NumPy
Set up your fork
Overview
In detail
Clone your fork
Linking your repository to the upstream repo
Git configuration
Overview
In detail
user.name and user.email
Aliases
Editor
Merging
Development workflow
Basic workflow
Making a new feature branch
The editing workflow
Overview
In more detail
Rebasing on master
Recovering from mess-ups
Asking for your changes to be merged with the main repo
Asking for code review
Filing a pull request
Pushing changes to the main repo
Additional things you might want to do
Rewriting commit history
Deleting a branch on github
Several people sharing a single repository
Exploring your repository
git resources
Tutorials and summaries
Advanced git workflow
Manual pages online
Release Notes
NumPy 1.3.0 Release Notes
Highlights
Python 2.6 support
Generalized ufuncs
Experimental Windows 64 bits support
New features
Formatting issues
Nan handling in max/min
Nan handling in sign
New ufuncs
Masked arrays
gfortran support on windows
Arch option for windows binary
Deprecated features
Histogram
Documentation changes
New C API
Multiarray API
Ufunc API
New defines
Portable NAN, INFINITY, etc...
Internal changes
numpy.core math configuration revamp
umath refactor
Improvements to build warnings
Separate core math library
CPU arch detection
About NumPy
NumPy community
About this documentation
Conventions
Reporting bugs
Numpy License
Glossary
Jargon
Next topic
NumPy User Guide
This Page
Show Source
Edit page
Quick search
Enter search terms or a module, class or function name.
Navigation
index
modules
|
modules
|
next
|
Numpy and Scipy Documentation
»