Combine two masks with the logical_or operator.
The result may be a view on m1 or m2 if the other is nomask (i.e. False).
Parameters : | m1, m2 : array_like
copy : bool, optional
shrink : bool, optional
|
---|---|
Returns : | mask : output mask
|
Raises : | ValueError :
|
Examples
>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
array([ True, True, True, False], dtype=bool)