Random sampling (numpy.random)

Simple random data

rand(d0, d1, ..., dn) Random values in a given shape.
randn([d1, ..., dn]) Return a sample (or samples) from the “standard normal” distribution.
randint(low[, high, size]) Return random integers from low (inclusive) to high (exclusive).
random_integers(low[, high, size]) Return random integers between low and high, inclusive.
random_sample(size=None) Return random floats in the half-open interval [0.0, 1.0).
bytes(length) Return random bytes.

Permutations

shuffle(x) Modify a sequence in-place by shuffling its contents.
permutation(x) Randomly permute a sequence, or return a permuted range.

Distributions

beta(a, b[, size]) The Beta distribution over [0, 1].
binomial(n, p[, size]) Draw samples from a binomial distribution.
chisquare(df[, size]) Draw samples from a chi-square distribution.
mtrand.dirichlet(alpha[, size]) Draw samples from the Dirichlet distribution.
exponential(scale=1.0[, size]) Exponential distribution.
f(dfnum, dfden[, size]) Draw samples from a F distribution.
gamma(shape[, scale, size]) Draw samples from a Gamma distribution.
geometric(p[, size]) Draw samples from the geometric distribution.
gumbel(loc=0.0[, scale, size]) Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric distribution.
laplace(loc=0.0[, scale, size]) Draw samples from the Laplace or double exponential distribution with
logistic(loc=0.0[, scale, size]) Draw samples from a Logistic distribution.
lognormal(mean=0.0[, sigma, size]) Return samples drawn from a log-normal distribution.
logseries(p[, size]) Draw samples from a Logarithmic Series distribution.
multinomial(n, pvals[, size]) Draw samples from a multinomial distribution.
multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal distribution.
negative_binomial(n, p[, size]) Draw samples from a negative_binomial distribution.
noncentral_chisquare(df, nonc[, size]) Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size]) Draw samples from the noncentral F distribution.
normal(loc=0.0[, scale, size]) Draw random samples from a normal (Gaussian) distribution.
pareto(a[, size]) Draw samples from a Pareto II or Lomax distribution with specified shape.
poisson(lam=1.0[, size]) Draw samples from a Poisson distribution.
power(a[, size]) Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
rayleigh(scale=1.0[, size]) Draw samples from a Rayleigh distribution.
standard_cauchy(size=None) Standard Cauchy distribution with mode = 0.
standard_exponential(size=None) Draw samples from the standard exponential distribution.
standard_gamma(shape[, size]) Draw samples from a Standard Gamma distribution.
standard_normal(size=None) Returns samples from a Standard Normal distribution (mean=0, stdev=1).
standard_t(df[, size]) Standard Student’s t distribution with df degrees of freedom.
triangular(left, mode, right[, size]) Draw samples from the triangular distribution.
uniform(low=0.0[, high, size]) Draw samples from a uniform distribution.
vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
wald(mean, scale[, size]) Draw samples from a Wald, or Inverse Gaussian, distribution.
weibull(a[, size]) Weibull distribution.
zipf(a[, size]) Draw samples from a Zipf distribution.

Random generator

mtrand.RandomState Container for the Mersenne Twister pseudo-random number generator.
seed(seed=None) Seed the generator.
get_state() Return a tuple representing the internal state of the generator.
set_state(state) Set the internal state of the generator from a tuple.

Table Of Contents

Previous topic

numpy.linalg.LinAlgError

Next topic

numpy.random.rand

This Page