dot(a, b) | Dot product of two arrays. |
vdot(a, b) | Return the dot product of two vectors. |
inner(a, b) | Inner product of two arrays. |
outer(a, b) | Compute the outer product of two vectors. |
tensordot(a, b[, axes]) | Compute tensor dot product along specified axes for arrays >= 1-D. |
linalg.matrix_power(M, n) | Raise a square matrix to the (integer) power n. |
kron(a, b) | Kronecker product of two arrays. |
linalg.cholesky(a) | Cholesky decomposition. |
linalg.qr(a[, mode]) | Compute the qr factorization of a matrix. |
linalg.svd(a[, full_matrices, compute_uv]) | Singular Value Decomposition. |
linalg.eig(a) | Compute the eigenvalues and right eigenvectors of a square array. |
linalg.eigh(a[, UPLO]) | Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. |
linalg.eigvals(a) | Compute the eigenvalues of a general matrix. |
linalg.eigvalsh(a[, UPLO]) | Compute the eigenvalues of a Hermitian or real symmetric matrix. |
linalg.norm(x[, ord]) | Matrix or vector norm. |
linalg.cond(x[, p]) | Compute the condition number of a matrix. |
linalg.det(a) | Compute the determinant of an array. |
trace(a[, offset, axis1, axis2, dtype, out]) | Return the sum along diagonals of the array. |
linalg.solve(a, b) | Solve a linear matrix equation, or system of linear scalar equations. |
linalg.tensorsolve(a, b[, axes]) | Solve the tensor equation a x = b for x. |
linalg.lstsq(a, b[, rcond]) | Return the least-squares solution to a linear matrix equation. |
linalg.inv(a) | Compute the (multiplicative) inverse of a matrix. |
linalg.pinv(a[, rcond]) | Compute the (Moore-Penrose) pseudo-inverse of a matrix. |
linalg.tensorinv(a[, ind]) | Compute the ‘inverse’ of an N-dimensional array. |
linalg.LinAlgError | Generic Python-exception-derived object raised by linalg functions. |