Compute the (multiplicative) inverse of a matrix.
Given a square matrix a, return the matrix ainv satisfying dot(a, ainv) = dot(ainv, a) = eye(a.shape[0]).
Parameters: | a : array_like, shape (M, M)
|
---|---|
Returns: | ainv : ndarray or matrix, shape (M, M)
|
Raises: | LinAlgError :
|
Examples
>>> from numpy import linalg as LA
>>> a = np.array([[1., 2.], [3., 4.]])
>>> ainv = LA.inv(a)
>>> np.allclose(np.dot(a, ainv), np.eye(2))
True
>>> np.allclose(np.dot(ainv, a), np.eye(2))
True
If a is a matrix object, then the return value is a matrix as well:
>>> ainv = LA.inv(np.matrix(a))
>>> ainv
matrix([[-2. , 1. ],
[ 1.5, -0.5]])