scipy.special.

roots_chebyu#

scipy.special.roots_chebyu(n, mu=False)[source]#

Gauss-Chebyshev (second kind) quadrature.

Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the nth degree Chebyshev polynomial of the second kind, \(U_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\) or less over the interval \([-1, 1]\) with weight function \(w(x) = \sqrt{1 - x^2}\). See 22.2.5 in [AS] for details.

Parameters:
nint

quadrature order

mubool, optional

If True, return the sum of the weights, optional.

Returns:
xndarray

Sample points

wndarray

Weights

mufloat

Sum of the weights

References

[AS]

Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.