quadrature#
- scipy.integrate.quadrature(func, a, b, args=(), tol=1.49e-08, rtol=1.49e-08, maxiter=50, vec_func=True, miniter=1)[source]#
Compute a definite integral using fixed-tolerance Gaussian quadrature.
Deprecated since version 1.12.0: This function is deprecated as of SciPy 1.12.0 and will be removed in SciPy 1.15.0. Please use
scipy.integrate.quad
instead.Integrate func from a to b using Gaussian quadrature with absolute tolerance tol.
- Parameters:
- funcfunction
A Python function or method to integrate.
- afloat
Lower limit of integration.
- bfloat
Upper limit of integration.
- argstuple, optional
Extra arguments to pass to function.
- tol, rtolfloat, optional
Iteration stops when error between last two iterates is less than tol OR the relative change is less than rtol.
- maxiterint, optional
Maximum order of Gaussian quadrature.
- vec_funcbool, optional
True or False if func handles arrays as arguments (is a “vector” function). Default is True.
- miniterint, optional
Minimum order of Gaussian quadrature.
- Returns:
- valfloat
Gaussian quadrature approximation (within tolerance) to integral.
- errfloat
Difference between last two estimates of the integral.
See also
fixed_quad
fixed-order Gaussian quadrature
quad
adaptive quadrature using QUADPACK
dblquad
double integrals
tplquad
triple integrals
romb
integrator for sampled data
simpson
integrator for sampled data
cumulative_trapezoid
cumulative integration for sampled data
Examples
>>> from scipy import integrate >>> import numpy as np >>> f = lambda x: x**8 >>> integrate.quadrature(f, 0.0, 1.0) (0.11111111111111106, 4.163336342344337e-17) >>> print(1/9.0) # analytical result 0.1111111111111111
>>> integrate.quadrature(np.cos, 0.0, np.pi/2) (0.9999999999999536, 3.9611425250996035e-11) >>> np.sin(np.pi/2)-np.sin(0) # analytical result 1.0