scipy.special.itstruve0#
- scipy.special.itstruve0(x, out=None) = <ufunc 'itstruve0'>#
Integral of the Struve function of order 0.
\[I = \int_0^x H_0(t)\,dt\]- Parameters:
- xarray_like
Upper limit of integration (float).
- outndarray, optional
Optional output array for the function values
- Returns:
- Iscalar or ndarray
The integral of \(H_0\) from 0 to x.
See also
struve
Function which is integrated by this function
Notes
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].
References
[1]Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
Examples
Evaluate the function at one point.
>>> import numpy as np >>> from scipy.special import itstruve0 >>> itstruve0(1.) 0.30109042670805547
Evaluate the function at several points by supplying an array for x.
>>> points = np.array([1., 2., 3.5]) >>> itstruve0(points) array([0.30109043, 1.01870116, 1.96804581])
Plot the function from -20 to 20.
>>> import matplotlib.pyplot as plt >>> x = np.linspace(-20., 20., 1000) >>> istruve0_values = itstruve0(x) >>> fig, ax = plt.subplots() >>> ax.plot(x, istruve0_values) >>> ax.set_xlabel(r'$x$') >>> ax.set_ylabel(r'$\int_0^{x}H_0(t)\,dt$') >>> plt.show()