scipy.special.itmodstruve0#
- scipy.special.itmodstruve0(x, out=None) = <ufunc 'itmodstruve0'>#
Integral of the modified Struve function of order 0.
\[I = \int_0^x L_0(t)\,dt\]- Parameters:
- xarray_like
Upper limit of integration (float).
- outndarray, optional
Optional output array for the function values
- Returns:
- Iscalar or ndarray
The integral of \(L_0\) from 0 to x.
See also
modstruve
Modified Struve function which is integrated by this function
Notes
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].
References
[1]Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
Examples
Evaluate the function at one point.
>>> import numpy as np >>> from scipy.special import itmodstruve0 >>> itmodstruve0(1.) 0.3364726286440384
Evaluate the function at several points by supplying an array for x.
>>> points = np.array([1., 2., 3.5]) >>> itmodstruve0(points) array([0.33647263, 1.588285 , 7.60382578])
Plot the function from -10 to 10.
>>> import matplotlib.pyplot as plt >>> x = np.linspace(-10., 10., 1000) >>> itmodstruve0_values = itmodstruve0(x) >>> fig, ax = plt.subplots() >>> ax.plot(x, itmodstruve0_values) >>> ax.set_xlabel(r'$x$') >>> ax.set_ylabel(r'$\int_0^xL_0(t)\,dt$') >>> plt.show()