scipy.interpolate.interpn¶
- scipy.interpolate.interpn(points, values, xi, method='linear', bounds_error=True, fill_value=nan)[source]¶
Multidimensional interpolation on regular grids.
Parameters: points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, )
The points defining the regular grid in n dimensions.
values : array_like, shape (m1, ..., mn, ...)
The data on the regular grid in n dimensions.
xi : ndarray of shape (..., ndim)
The coordinates to sample the gridded data at
method : str, optional
The method of interpolation to perform. Supported are “linear” and “nearest”, and “splinef2d”. “splinef2d” is only supported for 2-dimensional data.
bounds_error : bool, optional
If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then fill_value is used.
fill_value : number, optional
If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method “splinef2d”.
Returns: values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:]
Interpolated values at input coordinates.
See also
- NearestNDInterpolator
- Nearest neighbour interpolation on unstructured data in N dimensions
- LinearNDInterpolator
- Piecewise linear interpolant on unstructured data in N dimensions
- RegularGridInterpolator
- Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions
- RectBivariateSpline
- Bivariate spline approximation over a rectangular mesh
Notes
New in version 0.14.