scipy.special.
roots_jacobi#
- scipy.special.roots_jacobi(n, alpha, beta, mu=False)[source]#
 Gauss-Jacobi quadrature.
Compute the sample points and weights for Gauss-Jacobi quadrature. The sample points are the roots of the nth degree Jacobi polynomial, \(P^{\alpha, \beta}_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\) or less over the interval \([-1, 1]\) with weight function \(w(x) = (1 - x)^{\alpha} (1 + x)^{\beta}\). See 22.2.1 in [AS] for details.
- Parameters:
 - nint
 quadrature order
- alphafloat
 alpha must be > -1
- betafloat
 beta must be > -1
- mubool, optional
 If True, return the sum of the weights, optional.
- Returns:
 - xndarray
 Sample points
- wndarray
 Weights
- mufloat
 Sum of the weights
References
[AS]Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.