Mask an array where a condition is met.
Return a as an array masked where condition is True. Any masked values of a or condition are also masked in the output.
Parameters: | condition : array_like
a : array_like
copy : bool
|
---|---|
Returns: | result : MaskedArray
|
See also
Examples
>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
masked_array(data = [-- -- -- 3],
mask = [ True True True False],
fill_value=999999)
Mask array b conditional on a.
>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
masked_array(data = [a b -- d],
mask = [False False True False],
fill_value=N/A)
Effect of the copy argument.
>>> c = ma.masked_where(a <= 2, a)
>>> c
masked_array(data = [-- -- -- 3],
mask = [ True True True False],
fill_value=999999)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],
mask = [False True True False],
fill_value=999999)
>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],
mask = [False True True False],
fill_value=999999)
>>> a
array([99, 1, 2, 3])
When condition or a contain masked values.
>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data = [0 1 -- 3],
mask = [False False True False],
fill_value=999999)
>>> b = np.arange(4)
>>> b = ma.masked_where(b == 0, b)
>>> b
masked_array(data = [-- 1 2 3],
mask = [ True False False False],
fill_value=999999)
>>> ma.masked_where(a == 3, b)
masked_array(data = [-- 1 -- --],
mask = [ True False True True],
fill_value=999999)