Mask using floating point equality.
Return a MaskedArray, masked where the data in array x are approximately equal to value, i.e. where the following condition is True
(abs(x - value) <= atol+rtol*abs(value))
The fill_value is set to value and the mask is set to nomask if possible. For integers, consider using masked_equal.
Parameters: | x : array_like
value : float
rtol : float, optional
atol : float, optional
copy : bool, optional
shrink : bool, optional
|
---|---|
Returns: | result : MaskedArray
|
See also
Examples
>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
masked_array(data = [1.0 -- 2.0 -- 3.0],
mask = [False True False True False],
fill_value=1.1)
Note that mask is set to nomask if possible.
>>> ma.masked_values(x, 1.5)
masked_array(data = [ 1. 1.1 2. 1.1 3. ],
mask = False,
fill_value=1.5)
For integers, the fill value will be different in general to the result of masked_equal.
>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
masked_array(data = [0 1 -- 3 4],
mask = [False False True False False],
fill_value=2)
>>> ma.masked_equal(x, 2)
masked_array(data = [0 1 -- 3 4],
mask = [False False True False False],
fill_value=999999)