Mask an array where invalid values occur (NaNs or infs).
This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but accepts any array_like object.
See also
Examples
>>> import numpy.ma as ma
>>> a = np.arange(5, dtype=np.float)
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array([ 0., 1., NaN, Inf, 4.])
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 -- -- 4.0],
mask = [False False True True False],
fill_value=1e+20)