quadratic_assignment(method=’2opt’)#
- scipy.optimize.quadratic_assignment(A, B, method='faq', options=None)
Solve the quadratic assignment problem (approximately).
This function solves the Quadratic Assignment Problem (QAP) and the Graph Matching Problem (GMP) using the 2-opt algorithm [1].
Quadratic assignment solves problems of the following form:
\[\begin{split}\min_P & \ {\ \text{trace}(A^T P B P^T)}\\ \mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\\end{split}\]where \(\mathcal{P}\) is the set of all permutation matrices, and \(A\) and \(B\) are square matrices.
Graph matching tries to maximize the same objective function. This algorithm can be thought of as finding the alignment of the nodes of two graphs that minimizes the number of induced edge disagreements, or, in the case of weighted graphs, the sum of squared edge weight differences.
Note that the quadratic assignment problem is NP-hard. The results given here are approximations and are not guaranteed to be optimal.
- Parameters:
- A2-D array, square
The square matrix \(A\) in the objective function above.
- B2-D array, square
The square matrix \(B\) in the objective function above.
- methodstr in {‘faq’, ‘2opt’} (default: ‘faq’)
The algorithm used to solve the problem. This is the method-specific documentation for ‘2opt’. ‘faq’ is also available.
- Returns:
- resOptimizeResult
OptimizeResult
containing the following fields.- col_ind1-D array
Column indices corresponding to the best permutation found of the nodes of B.
- funfloat
The objective value of the solution.
- nitint
The number of iterations performed during optimization.
See also
For documentation for the rest of the parameters, see
scipy.optimize.quadratic_assignment
- Options:
- ——-
- maximizebool (default: False)
Maximizes the objective function if
True
.- rng{None, int,
numpy.random.Generator
, numpy.random.RandomState
}, optionalIf seed is None (or np.random), the
numpy.random.RandomState
singleton is used. If seed is an int, a newRandomState
instance is used, seeded with seed. If seed is already aGenerator
orRandomState
instance then that instance is used.- partial_match2-D array of integers, optional (default: None)
Fixes part of the matching. Also known as a “seed” [2].
Each row of partial_match specifies a pair of matched nodes: node
partial_match[i, 0]
of A is matched to nodepartial_match[i, 1]
of B. The array has shape(m, 2)
, wherem
is not greater than the number of nodes, \(n\).Note
partial_match must be sorted by the first column.
- partial_guess2-D array of integers, optional (default: None)
A guess for the matching between the two matrices. Unlike partial_match, partial_guess does not fix the indices; they are still free to be optimized.
Each row of partial_guess specifies a pair of matched nodes: node
partial_guess[i, 0]
of A is matched to nodepartial_guess[i, 1]
of B. The array has shape(m, 2)
, wherem
is not greater than the number of nodes, \(n\).Note
partial_guess must be sorted by the first column.
Notes
This is a greedy algorithm that works similarly to bubble sort: beginning with an initial permutation, it iteratively swaps pairs of indices to improve the objective function until no such improvements are possible.
References
[1]“2-opt,” Wikipedia. https://en.wikipedia.org/wiki/2-opt
[2]D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski, C. Priebe, “Seeded graph matching”, Pattern Recognit. 87 (2019): 203-215, https://doi.org/10.1016/j.patcog.2018.09.014