scipy.stats.variation¶
-
scipy.stats.variation(a, axis=0, nan_policy='propagate', ddof=0)[source]¶ Compute the coefficient of variation.
The coefficient of variation is the standard deviation divided by the mean. This function is equivalent to:
np.std(x, axis=axis, ddof=ddof) / np.mean(x)
The default for
ddofis 0, but many definitions of the coefficient of variation use the square root of the unbiased sample variance for the sample standard deviation, which corresponds toddof=1.- Parameters
- aarray_like
Input array.
- axisint or None, optional
Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array a.
- nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
‘propagate’: returns nan
‘raise’: throws an error
‘omit’: performs the calculations ignoring nan values
- ddofint, optional
Delta degrees of freedom. Default is 0.
- Returns
- variationndarray
The calculated variation along the requested axis.
References
- 1
Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000.
Examples
>>> from scipy.stats import variation >>> variation([1, 2, 3, 4, 5]) 0.47140452079103173