scipy.stats.nct¶
-
scipy.stats.
nct
= <scipy.stats._continuous_distns.nct_gen object>[source]¶ A non-central Student’s t continuous random variable.
As an instance of the
rv_continuous
class,nct
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
If \(Y\) is a standard normal random variable and \(V\) is an independent chi-square random variable (
chi2
) with \(k\) degrees of freedom, then\[X = \frac{Y + c}{\sqrt{V/k}}\]has a non-central Student’s t distribution on the real line. The degrees of freedom parameter \(k\) (denoted
df
in the implementation) satisfies \(k > 0\) and the noncentrality parameter \(c\) (denotednc
in the implementation) is a real number.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,nct.pdf(x, df, nc, loc, scale)
is identically equivalent tonct.pdf(y, df, nc) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.Examples
>>> from scipy.stats import nct >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> df, nc = 14, 0.24 >>> mean, var, skew, kurt = nct.stats(df, nc, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(nct.ppf(0.01, df, nc), ... nct.ppf(0.99, df, nc), 100) >>> ax.plot(x, nct.pdf(x, df, nc), ... 'r-', lw=5, alpha=0.6, label='nct pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = nct(df, nc) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = nct.ppf([0.001, 0.5, 0.999], df, nc) >>> np.allclose([0.001, 0.5, 0.999], nct.cdf(vals, df, nc)) True
Generate random numbers:
>>> r = nct.rvs(df, nc, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(df, nc, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, df, nc, loc=0, scale=1)
Probability density function.
logpdf(x, df, nc, loc=0, scale=1)
Log of the probability density function.
cdf(x, df, nc, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, df, nc, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, df, nc, loc=0, scale=1)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(x, df, nc, loc=0, scale=1)
Log of the survival function.
ppf(q, df, nc, loc=0, scale=1)
Percent point function (inverse of
cdf
— percentiles).isf(q, df, nc, loc=0, scale=1)
Inverse survival function (inverse of
sf
).moment(n, df, nc, loc=0, scale=1)
Non-central moment of order n
stats(df, nc, loc=0, scale=1, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(df, nc, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(df, nc), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(df, nc, loc=0, scale=1)
Median of the distribution.
mean(df, nc, loc=0, scale=1)
Mean of the distribution.
var(df, nc, loc=0, scale=1)
Variance of the distribution.
std(df, nc, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, df, nc, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the distribution