scipy.spatial.distance.rogerstanimoto

scipy.spatial.distance.rogerstanimoto(u, v, w=None)[source]

Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.

The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays u and v, is defined as

\[\frac{R} {c_{TT} + c_{FF} + R}\]

where \(c_{ij}\) is the number of occurrences of \(\mathtt{u[k]} = i\) and \(\mathtt{v[k]} = j\) for \(k < n\) and \(R = 2(c_{TF} + c_{FT})\).

Parameters
u(N,) array_like, bool

Input array.

v(N,) array_like, bool

Input array.

w(N,) array_like, optional

The weights for each value in u and v. Default is None, which gives each value a weight of 1.0

Returns
rogerstanimotodouble

The Rogers-Tanimoto dissimilarity between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0])
0.8
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0])
0.5
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0])
-1.0