scipy.sparse.linalg.minres¶
- 
scipy.sparse.linalg.minres(A, b, x0=None, shift=0.0, tol=1e-05, maxiter=None, M=None, callback=None, show=False, check=False)[source]¶ Use MINimum RESidual iteration to solve Ax=b
MINRES minimizes norm(A*x - b) for a real symmetric matrix A. Unlike the Conjugate Gradient method, A can be indefinite or singular.
If shift != 0 then the method solves (A - shift*I)x = b
- Parameters
 - A{sparse matrix, dense matrix, LinearOperator}
 The real symmetric N-by-N matrix of the linear system Alternatively,
Acan be a linear operator which can produceAxusing, e.g.,scipy.sparse.linalg.LinearOperator.- b{array, matrix}
 Right hand side of the linear system. Has shape (N,) or (N,1).
- Returns
 - x{array, matrix}
 The converged solution.
- infointeger
 - Provides convergence information:
 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown
- Other Parameters
 - x0{array, matrix}
 Starting guess for the solution.
- tolfloat
 Tolerance to achieve. The algorithm terminates when the relative residual is below tol.
- maxiterinteger
 Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- M{sparse matrix, dense matrix, LinearOperator}
 Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- callbackfunction
 User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
References
- Solution of sparse indefinite systems of linear equations,
 C. C. Paige and M. A. Saunders (1975), SIAM J. Numer. Anal. 12(4), pp. 617-629. https://web.stanford.edu/group/SOL/software/minres/
- This file is a translation of the following MATLAB implementation:
 https://web.stanford.edu/group/SOL/software/minres/minres-matlab.zip
Examples
>>> import numpy as np >>> from scipy.sparse import csc_matrix >>> from scipy.sparse.linalg import minres >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float) >>> A = A + A.T >>> b = np.array([2, 4, -1], dtype=float) >>> x, exitCode = minres(A, b) >>> print(exitCode) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True