scipy.sparse.linalg.cgs¶
- 
scipy.sparse.linalg.cgs(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None)¶ Use Conjugate Gradient Squared iteration to solve
Ax = b.- Parameters
 - A{sparse matrix, dense matrix, LinearOperator}
 The real-valued N-by-N matrix of the linear system. Alternatively,
Acan be a linear operator which can produceAxusing, e.g.,scipy.sparse.linalg.LinearOperator.- b{array, matrix}
 Right hand side of the linear system. Has shape (N,) or (N,1).
- Returns
 - x{array, matrix}
 The converged solution.
- infointeger
 - Provides convergence information:
 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown
- Other Parameters
 - x0{array, matrix}
 Starting guess for the solution.
- tol, atolfloat, optional
 Tolerances for convergence,
norm(residual) <= max(tol*norm(b), atol). The default foratolis'legacy', which emulates a different legacy behavior.Warning
The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.
- maxiterinteger
 Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- M{sparse matrix, dense matrix, LinearOperator}
 Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- callbackfunction
 User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.