lu#
- scipy.linalg.lu(a, permute_l=False, overwrite_a=False, check_finite=True, p_indices=False)[source]#
Compute LU decomposition of a matrix with partial pivoting.
The decomposition satisfies:
A = P @ L @ U
where
P
is a permutation matrix,L
lower triangular with unit diagonal elements, andU
upper triangular. If permute_l is set toTrue
thenL
is returned already permuted and hence satisfyingA = L @ U
.- Parameters:
- a(M, N) array_like
Array to decompose
- permute_lbool, optional
Perform the multiplication P*L (Default: do not permute)
- overwrite_abool, optional
Whether to overwrite data in a (may improve performance)
- check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- p_indicesbool, optional
If
True
the permutation information is returned as row indices. The default isFalse
for backwards-compatibility reasons.
- Returns:
- (If `permute_l` is ``False``)
- p(…, M, M) ndarray
Permutation arrays or vectors depending on p_indices
- l(…, M, K) ndarray
Lower triangular or trapezoidal array with unit diagonal.
K = min(M, N)
- u(…, K, N) ndarray
Upper triangular or trapezoidal array
- (If `permute_l` is ``True``)
- pl(…, M, K) ndarray
Permuted L matrix.
K = min(M, N)
- u(…, K, N) ndarray
Upper triangular or trapezoidal array
Notes
Permutation matrices are costly since they are nothing but row reorder of
L
and hence indices are strongly recommended to be used instead if the permutation is required. The relation in the 2D case then becomes simplyA = L[P, :] @ U
. In higher dimensions, it is better to use permute_l to avoid complicated indexing tricks.In 2D case, if one has the indices however, for some reason, the permutation matrix is still needed then it can be constructed by
np.eye(M)[P, :]
.Examples
>>> import numpy as np >>> from scipy.linalg import lu >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) >>> p, l, u = lu(A) >>> np.allclose(A, p @ l @ u) True >>> p # Permutation matrix array([[0., 1., 0., 0.], # Row index 1 [0., 0., 0., 1.], # Row index 3 [1., 0., 0., 0.], # Row index 0 [0., 0., 1., 0.]]) # Row index 2 >>> p, _, _ = lu(A, p_indices=True) >>> p array([1, 3, 0, 2]) # as given by row indices above >>> np.allclose(A, l[p, :] @ u) True
We can also use nd-arrays, for example, a demonstration with 4D array:
>>> rng = np.random.default_rng() >>> A = rng.uniform(low=-4, high=4, size=[3, 2, 4, 8]) >>> p, l, u = lu(A) >>> p.shape, l.shape, u.shape ((3, 2, 4, 4), (3, 2, 4, 4), (3, 2, 4, 8)) >>> np.allclose(A, p @ l @ u) True >>> PL, U = lu(A, permute_l=True) >>> np.allclose(A, PL @ U) True