scipy.stats.poisson_binom#
- scipy.stats.poisson_binom = <scipy.stats._discrete_distns.poisson_binom_gen object>[source]#
A Poisson Binomial discrete random variable.
As an instance of the
rv_discrete
class,poisson_binom
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.See also
Notes
The probability mass function for
poisson_binom
is:\[f(k; p_1, p_2, ..., p_n) = \sum_{A \in F_k} \prod_{i \in A} p_i \prod_{j \in A^C} 1 - p_j\]where \(k \in \{0, 1, \dots, n-1, n\}\), \(F_k\) is the set of all subsets of \(k\) integers that can be selected \(\{0, 1, \dots, n-1, n\}\), and \(A^C\) is the complement of a set \(A\).
poisson_binom
accepts a single array argumentp
for shape parameters \(0 ≤ p_i ≤ 1\), where the last axis corresponds with the index \(i\) and any others are for batch dimensions. Broadcasting behaves according to the usual rules except that the last axis ofp
is ignored. Instances of this class do not support serialization/unserialization.The probability mass function above is defined in the “standardized” form. To shift distribution use the
loc
parameter. Specifically,poisson_binom.pmf(k, p, loc)
is identically equivalent topoisson_binom.pmf(k - loc, p)
.References
[1]“Poisson binomial distribution”, Wikipedia, https://en.wikipedia.org/wiki/Poisson_binomial_distribution
[2]Biscarri, William, Sihai Dave Zhao, and Robert J. Brunner. “A simple and fast method for computing the Poisson binomial distribution function”. Computational Statistics & Data Analysis 122 (2018) 92-100. DOI:10.1016/j.csda.2018.01.007
Examples
>>> import numpy as np >>> from scipy.stats import poisson_binom >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> p = [0.1, 0.6, 0.7, 0.8] >>> mean, var, skew, kurt = poisson_binom.stats(p, moments='mvsk')
Display the probability mass function (
pmf
):>>> x = np.arange(poisson_binom.ppf(0.01, p), ... poisson_binom.ppf(0.99, p)) >>> ax.plot(x, poisson_binom.pmf(x, p), 'bo', ms=8, label='poisson_binom pmf') >>> ax.vlines(x, 0, poisson_binom.pmf(x, p), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pmf
:>>> rv = poisson_binom(p) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Check accuracy of
cdf
andppf
:>>> prob = poisson_binom.cdf(x, p) >>> np.allclose(x, poisson_binom.ppf(prob, p)) True
Generate random numbers:
>>> r = poisson_binom.rvs(p, size=1000)
Methods
rvs(p, loc=0, size=1, random_state=None)
Random variates.
pmf(k, p, loc=0)
Probability mass function.
logpmf(k, p, loc=0)
Log of the probability mass function.
cdf(k, p, loc=0)
Cumulative distribution function.
logcdf(k, p, loc=0)
Log of the cumulative distribution function.
sf(k, p, loc=0)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(k, p, loc=0)
Log of the survival function.
ppf(q, p, loc=0)
Percent point function (inverse of
cdf
— percentiles).isf(q, p, loc=0)
Inverse survival function (inverse of
sf
).stats(p, loc=0, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(p, loc=0)
(Differential) entropy of the RV.
expect(func, args=(p,), loc=0, lb=None, ub=None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(p, loc=0)
Median of the distribution.
mean(p, loc=0)
Mean of the distribution.
var(p, loc=0)
Variance of the distribution.
std(p, loc=0)
Standard deviation of the distribution.
interval(confidence, p, loc=0)
Confidence interval with equal areas around the median.