scipy.special.

# zeta#

scipy.special.zeta(x, q=None, out=None)[source]#

Riemann or Hurwitz zeta function.

Parameters:
xarray_like of float

Input data, must be real

qarray_like of float, optional

Input data, must be real. Defaults to Riemann zeta.

outndarray, optional

Output array for the computed values.

Returns:
outarray_like

Values of zeta(x).

Notes

The two-argument version is the Hurwitz zeta function

$\zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x};$

see [dlmf] for details. The Riemann zeta function corresponds to the case when q = 1.

References

[dlmf]

NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/25.11#i

Examples

>>> import numpy as np
>>> from scipy.special import zeta, polygamma, factorial


Some specific values:

>>> zeta(2), np.pi**2/6
(1.6449340668482266, 1.6449340668482264)

>>> zeta(4), np.pi**4/90
(1.0823232337111381, 1.082323233711138)


Relation to the polygamma function:

>>> m = 3
>>> x = 1.25
>>> polygamma(m, x)
array(2.782144009188397)
>>> (-1)**(m+1) * factorial(m) * zeta(m+1, x)
2.7821440091883969