scipy.spatial.distance.
sokalmichener#
- scipy.spatial.distance.sokalmichener(u, v, w=None)[source]#
- Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays. - Deprecated since version 1.15.0: This function is deprecated and will be removed in SciPy 1.17.0. Replace usage of - sokalmichener(u, v)with- rogerstanimoto(u, v).- The Sokal-Michener dissimilarity between boolean 1-D arrays u and v, is defined as \[\frac{R} {S + R}\]- where \(c_{ij}\) is the number of occurrences of \(\mathtt{u[k]} = i\) and \(\mathtt{v[k]} = j\) for \(k < n\), \(R = 2 * (c_{TF} + c_{FT})\) and \(S = c_{FF} + c_{TT}\). - Parameters:
- u(N,) array_like, bool
- Input array. 
- v(N,) array_like, bool
- Input array. 
- w(N,) array_like, optional
- The weights for each value in u and v. Default is None, which gives each value a weight of 1.0 
 
- Returns:
- sokalmichenerdouble
- The Sokal-Michener dissimilarity between vectors u and v. 
 
 - Examples - >>> from scipy.spatial import distance >>> distance.sokalmichener([1, 0, 0], [0, 1, 0]) 0.8 >>> distance.sokalmichener([1, 0, 0], [1, 1, 0]) 0.5 >>> distance.sokalmichener([1, 0, 0], [2, 0, 0]) -1.0