rq#
- scipy.linalg.rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True)[source]#
- Compute RQ decomposition of a matrix. - Calculate the decomposition - A = R Qwhere Q is unitary/orthogonal and R upper triangular.- Parameters:
- a(M, N) array_like
- Matrix to be decomposed 
- overwrite_abool, optional
- Whether data in a is overwritten (may improve performance) 
- lworkint, optional
- Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed. 
- mode{‘full’, ‘r’, ‘economic’}, optional
- Determines what information is to be returned: either both Q and R (‘full’, default), only R (‘r’) or both Q and R but computed in economy-size (‘economic’, see Notes). 
- check_finitebool, optional
- Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. 
 
- Returns:
- Rfloat or complex ndarray
- Of shape (M, N) or (M, K) for - mode='economic'.- K = min(M, N).
- Qfloat or complex ndarray
- Of shape (N, N) or (K, N) for - mode='economic'. Not returned if- mode='r'.
 
- Raises:
- LinAlgError
- If decomposition fails. 
 
 - Notes - This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf, sorgrq, dorgrq, cungrq and zungrq. - If - mode=economic, the shapes of Q and R are (K, N) and (M, K) instead of (N,N) and (M,N), with- K=min(M,N).- Examples - >>> import numpy as np >>> from scipy import linalg >>> rng = np.random.default_rng() >>> a = rng.standard_normal((6, 9)) >>> r, q = linalg.rq(a) >>> np.allclose(a, r @ q) True >>> r.shape, q.shape ((6, 9), (9, 9)) >>> r2 = linalg.rq(a, mode='r') >>> np.allclose(r, r2) True >>> r3, q3 = linalg.rq(a, mode='economic') >>> r3.shape, q3.shape ((6, 6), (6, 9))