idctn#
- scipy.fft.idctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None, orthogonalize=None)[source]#
- Return multidimensional Inverse Discrete Cosine Transform along the specified axes. - Parameters:
- xarray_like
- The input array. 
- type{1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2. 
- sint or array_like of ints or None, optional
- The shape of the result. If both s and axes (see below) are None, s is - x.shape; if s is None but axes is not None, then s is- numpy.take(x.shape, axes, axis=0). If- s[i] > x.shape[i], the ith dimension of the input is padded with zeros. If- s[i] < x.shape[i], the ith dimension of the input is truncated to length- s[i]. If any element of s is -1, the size of the corresponding dimension of x is used.
- axesint or array_like of ints or None, optional
- Axes over which the IDCT is computed. If not given, the last - len(s)axes are used, or all axes if s is also not specified.
- norm{“backward”, “ortho”, “forward”}, optional
- Normalization mode (see Notes). Default is “backward”. 
- overwrite_xbool, optional
- If True, the contents of x can be destroyed; the default is False. 
- workersint, optional
- Maximum number of workers to use for parallel computation. If negative, the value wraps around from - os.cpu_count(). See- fftfor more details.
- orthogonalizebool, optional
- Whether to use the orthogonalized IDCT variant (see Notes). Defaults to - Truewhen- norm="ortho"and- Falseotherwise.- Added in version 1.8.0. 
 
- Returns:
- yndarray of real
- The transformed input array. 
 
 - See also - dctn
- multidimensional DCT 
 - Notes - For full details of the IDCT types and normalization modes, as well as references, see - idct.- Examples - >>> import numpy as np >>> from scipy.fft import dctn, idctn >>> rng = np.random.default_rng() >>> y = rng.standard_normal((16, 16)) >>> np.allclose(y, idctn(dctn(y))) True