Masked array operations¶
Constants¶
ma.MaskType | 
alias of numpy.bool_ | 
Creation¶
From existing data¶
ma.masked_array | 
alias of numpy.ma.core.MaskedArray | 
ma.array(data[, dtype, copy, order, mask, …]) | 
An array class with possibly masked values. | 
ma.copy(self, *args, **params) a.copy(order=) | 
Return a copy of the array. | 
ma.frombuffer(buffer[, dtype, count, offset]) | 
Interpret a buffer as a 1-dimensional array. | 
ma.fromfunction(function, shape, **kwargs) | 
Construct an array by executing a function over each coordinate. | 
ma.MaskedArray.copy([order]) | 
Return a copy of the array. | 
Ones and zeros¶
ma.empty(shape[, dtype, order]) | 
Return a new array of given shape and type, without initializing entries. | 
ma.empty_like(prototype[, dtype, order, …]) | 
Return a new array with the same shape and type as a given array. | 
ma.masked_all(shape[, dtype]) | 
Empty masked array with all elements masked. | 
ma.masked_all_like(arr) | 
Empty masked array with the properties of an existing array. | 
ma.ones(shape[, dtype, order]) | 
Return a new array of given shape and type, filled with ones. | 
ma.zeros(shape[, dtype, order]) | 
Return a new array of given shape and type, filled with zeros. | 
Inspecting the array¶
ma.all(self[, axis, out, keepdims]) | 
Returns True if all elements evaluate to True. | 
ma.any(self[, axis, out, keepdims]) | 
Returns True if any of the elements of a evaluate to True. | 
ma.count(self[, axis, keepdims]) | 
Count the non-masked elements of the array along the given axis. | 
ma.count_masked(arr[, axis]) | 
Count the number of masked elements along the given axis. | 
ma.getmask(a) | 
Return the mask of a masked array, or nomask. | 
ma.getmaskarray(arr) | 
Return the mask of a masked array, or full boolean array of False. | 
ma.getdata(a[, subok]) | 
Return the data of a masked array as an ndarray. | 
ma.nonzero(self) | 
Return the indices of unmasked elements that are not zero. | 
ma.shape(obj) | 
Return the shape of an array. | 
ma.size(obj[, axis]) | 
Return the number of elements along a given axis. | 
ma.is_masked(x) | 
Determine whether input has masked values. | 
ma.is_mask(m) | 
Return True if m is a valid, standard mask. | 
ma.MaskedArray.all(self[, axis, out, keepdims]) | 
Returns True if all elements evaluate to True. | 
ma.MaskedArray.any(self[, axis, out, keepdims]) | 
Returns True if any of the elements of a evaluate to True. | 
ma.MaskedArray.count(self[, axis, keepdims]) | 
Count the non-masked elements of the array along the given axis. | 
ma.MaskedArray.nonzero(self) | 
Return the indices of unmasked elements that are not zero. | 
ma.shape(obj) | 
Return the shape of an array. | 
ma.size(obj[, axis]) | 
Return the number of elements along a given axis. | 
ma.MaskedArray.data | 
Returns the underlying data, as a view of the masked array. | 
ma.MaskedArray.mask | 
Current mask. | 
ma.MaskedArray.recordmask | 
Get or set the mask of the array if it has no named fields. | 
Manipulating a MaskedArray¶
Changing the shape¶
ma.ravel(self[, order]) | 
Returns a 1D version of self, as a view. | 
ma.reshape(a, new_shape[, order]) | 
Returns an array containing the same data with a new shape. | 
ma.resize(x, new_shape) | 
Return a new masked array with the specified size and shape. | 
ma.MaskedArray.flatten([order]) | 
Return a copy of the array collapsed into one dimension. | 
ma.MaskedArray.ravel(self[, order]) | 
Returns a 1D version of self, as a view. | 
ma.MaskedArray.reshape(self, \*s, \*\*kwargs) | 
Give a new shape to the array without changing its data. | 
ma.MaskedArray.resize(self, newshape[, …]) | 
Modifying axes¶
ma.swapaxes(self, *args, …) | 
Return a view of the array with axis1 and axis2 interchanged. | 
ma.transpose(a[, axes]) | 
Permute the dimensions of an array. | 
ma.MaskedArray.swapaxes(axis1, axis2) | 
Return a view of the array with axis1 and axis2 interchanged. | 
ma.MaskedArray.transpose(*axes) | 
Returns a view of the array with axes transposed. | 
Changing the number of dimensions¶
ma.atleast_1d(*args, **kwargs) | 
Convert inputs to arrays with at least one dimension. | 
ma.atleast_2d(*args, **kwargs) | 
View inputs as arrays with at least two dimensions. | 
ma.atleast_3d(*args, **kwargs) | 
View inputs as arrays with at least three dimensions. | 
ma.expand_dims(a, axis) | 
Expand the shape of an array. | 
ma.squeeze(a[, axis]) | 
Remove single-dimensional entries from the shape of an array. | 
ma.MaskedArray.squeeze([axis]) | 
Remove single-dimensional entries from the shape of a. | 
ma.stack(*args, **kwargs) | 
Join a sequence of arrays along a new axis. | 
ma.column_stack(*args, **kwargs) | 
Stack 1-D arrays as columns into a 2-D array. | 
ma.concatenate(arrays[, axis]) | 
Concatenate a sequence of arrays along the given axis. | 
ma.dstack(*args, **kwargs) | 
Stack arrays in sequence depth wise (along third axis). | 
ma.hstack(*args, **kwargs) | 
Stack arrays in sequence horizontally (column wise). | 
ma.hsplit(*args, **kwargs) | 
Split an array into multiple sub-arrays horizontally (column-wise). | 
ma.mr_ | 
Translate slice objects to concatenation along the first axis. | 
ma.row_stack(*args, **kwargs) | 
Stack arrays in sequence vertically (row wise). | 
ma.vstack(*args, **kwargs) | 
Stack arrays in sequence vertically (row wise). | 
Joining arrays¶
ma.stack(*args, **kwargs) | 
Join a sequence of arrays along a new axis. | 
ma.column_stack(*args, **kwargs) | 
Stack 1-D arrays as columns into a 2-D array. | 
ma.concatenate(arrays[, axis]) | 
Concatenate a sequence of arrays along the given axis. | 
ma.append(a, b[, axis]) | 
Append values to the end of an array. | 
ma.dstack(*args, **kwargs) | 
Stack arrays in sequence depth wise (along third axis). | 
ma.hstack(*args, **kwargs) | 
Stack arrays in sequence horizontally (column wise). | 
ma.vstack(*args, **kwargs) | 
Stack arrays in sequence vertically (row wise). | 
Operations on masks¶
Creating a mask¶
ma.make_mask(m[, copy, shrink, dtype]) | 
Create a boolean mask from an array. | 
ma.make_mask_none(newshape[, dtype]) | 
Return a boolean mask of the given shape, filled with False. | 
ma.mask_or(m1, m2[, copy, shrink]) | 
Combine two masks with the logical_or operator. | 
ma.make_mask_descr(ndtype) | 
Construct a dtype description list from a given dtype. | 
Accessing a mask¶
ma.getmask(a) | 
Return the mask of a masked array, or nomask. | 
ma.getmaskarray(arr) | 
Return the mask of a masked array, or full boolean array of False. | 
ma.masked_array.mask | 
Current mask. | 
Finding masked data¶
ma.flatnotmasked_contiguous(a) | 
Find contiguous unmasked data in a masked array along the given axis. | 
ma.flatnotmasked_edges(a) | 
Find the indices of the first and last unmasked values. | 
ma.notmasked_contiguous(a[, axis]) | 
Find contiguous unmasked data in a masked array along the given axis. | 
ma.notmasked_edges(a[, axis]) | 
Find the indices of the first and last unmasked values along an axis. | 
ma.clump_masked(a) | 
Returns a list of slices corresponding to the masked clumps of a 1-D array. | 
ma.clump_unmasked(a) | 
Return list of slices corresponding to the unmasked clumps of a 1-D array. | 
Modifying a mask¶
ma.mask_cols(a[, axis]) | 
Mask columns of a 2D array that contain masked values. | 
ma.mask_or(m1, m2[, copy, shrink]) | 
Combine two masks with the logical_or operator. | 
ma.mask_rowcols(a[, axis]) | 
Mask rows and/or columns of a 2D array that contain masked values. | 
ma.mask_rows(a[, axis]) | 
Mask rows of a 2D array that contain masked values. | 
ma.harden_mask(self) | 
Force the mask to hard. | 
ma.soften_mask(self) | 
Force the mask to soft. | 
ma.MaskedArray.harden_mask(self) | 
Force the mask to hard. | 
ma.MaskedArray.soften_mask(self) | 
Force the mask to soft. | 
ma.MaskedArray.shrink_mask(self) | 
Reduce a mask to nomask when possible. | 
ma.MaskedArray.unshare_mask(self) | 
Copy the mask and set the sharedmask flag to False. | 
Conversion operations¶
> to a masked array¶
ma.asarray(a[, dtype, order]) | 
Convert the input to a masked array of the given data-type. | 
ma.asanyarray(a[, dtype]) | 
Convert the input to a masked array, conserving subclasses. | 
ma.fix_invalid(a[, mask, copy, fill_value]) | 
Return input with invalid data masked and replaced by a fill value. | 
ma.masked_equal(x, value[, copy]) | 
Mask an array where equal to a given value. | 
ma.masked_greater(x, value[, copy]) | 
Mask an array where greater than a given value. | 
ma.masked_greater_equal(x, value[, copy]) | 
Mask an array where greater than or equal to a given value. | 
ma.masked_inside(x, v1, v2[, copy]) | 
Mask an array inside a given interval. | 
ma.masked_invalid(a[, copy]) | 
Mask an array where invalid values occur (NaNs or infs). | 
ma.masked_less(x, value[, copy]) | 
Mask an array where less than a given value. | 
ma.masked_less_equal(x, value[, copy]) | 
Mask an array where less than or equal to a given value. | 
ma.masked_not_equal(x, value[, copy]) | 
Mask an array where not equal to a given value. | 
ma.masked_object(x, value[, copy, shrink]) | 
Mask the array x where the data are exactly equal to value. | 
ma.masked_outside(x, v1, v2[, copy]) | 
Mask an array outside a given interval. | 
ma.masked_values(x, value[, rtol, atol, …]) | 
Mask using floating point equality. | 
ma.masked_where(condition, a[, copy]) | 
Mask an array where a condition is met. | 
> to a ndarray¶
ma.compress_cols(a) | 
Suppress whole columns of a 2-D array that contain masked values. | 
ma.compress_rowcols(x[, axis]) | 
Suppress the rows and/or columns of a 2-D array that contain masked values. | 
ma.compress_rows(a) | 
Suppress whole rows of a 2-D array that contain masked values. | 
ma.compressed(x) | 
Return all the non-masked data as a 1-D array. | 
ma.filled(a[, fill_value]) | 
Return input as an array with masked data replaced by a fill value. | 
ma.MaskedArray.compressed(self) | 
Return all the non-masked data as a 1-D array. | 
ma.MaskedArray.filled(self[, fill_value]) | 
Return a copy of self, with masked values filled with a given value. | 
> to another object¶
ma.MaskedArray.tofile(self, fid[, sep, format]) | 
Save a masked array to a file in binary format. | 
ma.MaskedArray.tolist(self[, fill_value]) | 
Return the data portion of the masked array as a hierarchical Python list. | 
ma.MaskedArray.torecords(self) | 
Transforms a masked array into a flexible-type array. | 
ma.MaskedArray.tobytes(self[, fill_value, order]) | 
Return the array data as a string containing the raw bytes in the array. | 
Pickling and unpickling¶
ma.dump(a, F) | 
Pickle a masked array to a file. | 
ma.dumps(a) | 
Return a string corresponding to the pickling of a masked array. | 
ma.load(F) | 
Wrapper around cPickle.load which accepts either a file-like object or a filename. | 
ma.loads(strg) | 
Load a pickle from the current string. | 
Filling a masked array¶
ma.common_fill_value(a, b) | 
Return the common filling value of two masked arrays, if any. | 
ma.default_fill_value(obj) | 
Return the default fill value for the argument object. | 
ma.maximum_fill_value(obj) | 
Return the minimum value that can be represented by the dtype of an object. | 
ma.maximum_fill_value(obj) | 
Return the minimum value that can be represented by the dtype of an object. | 
ma.set_fill_value(a, fill_value) | 
Set the filling value of a, if a is a masked array. | 
ma.MaskedArray.get_fill_value(self) | 
The filling value of the masked array is a scalar. | 
ma.MaskedArray.set_fill_value(self[, value]) | 
ma.MaskedArray.fill_value | 
The filling value of the masked array is a scalar. | 
Masked arrays arithmetics¶
Arithmetics¶
ma.anom(self[, axis, dtype]) | 
Compute the anomalies (deviations from the arithmetic mean) along the given axis. | 
ma.anomalies(self[, axis, dtype]) | 
Compute the anomalies (deviations from the arithmetic mean) along the given axis. | 
ma.average(a[, axis, weights, returned]) | 
Return the weighted average of array over the given axis. | 
ma.conjugate(x, /[, out, where, casting, …]) | 
Return the complex conjugate, element-wise. | 
ma.corrcoef(x[, y, rowvar, bias, …]) | 
Return Pearson product-moment correlation coefficients. | 
ma.cov(x[, y, rowvar, bias, allow_masked, ddof]) | 
Estimate the covariance matrix. | 
ma.cumsum(self[, axis, dtype, out]) | 
Return the cumulative sum of the array elements over the given axis. | 
ma.cumprod(self[, axis, dtype, out]) | 
Return the cumulative product of the array elements over the given axis. | 
ma.mean(self[, axis, dtype, out, keepdims]) | 
Returns the average of the array elements along given axis. | 
ma.median(a[, axis, out, overwrite_input, …]) | 
Compute the median along the specified axis. | 
ma.power(a, b[, third]) | 
Returns element-wise base array raised to power from second array. | 
ma.prod(self[, axis, dtype, out, keepdims]) | 
Return the product of the array elements over the given axis. | 
ma.std(self[, axis, dtype, out, ddof, keepdims]) | 
Returns the standard deviation of the array elements along given axis. | 
ma.sum(self[, axis, dtype, out, keepdims]) | 
Return the sum of the array elements over the given axis. | 
ma.var(self[, axis, dtype, out, ddof, keepdims]) | 
Compute the variance along the specified axis. | 
ma.MaskedArray.anom(self[, axis, dtype]) | 
Compute the anomalies (deviations from the arithmetic mean) along the given axis. | 
ma.MaskedArray.cumprod(self[, axis, dtype, out]) | 
Return the cumulative product of the array elements over the given axis. | 
ma.MaskedArray.cumsum(self[, axis, dtype, out]) | 
Return the cumulative sum of the array elements over the given axis. | 
ma.MaskedArray.mean(self[, axis, dtype, …]) | 
Returns the average of the array elements along given axis. | 
ma.MaskedArray.prod(self[, axis, dtype, …]) | 
Return the product of the array elements over the given axis. | 
ma.MaskedArray.std(self[, axis, dtype, out, …]) | 
Returns the standard deviation of the array elements along given axis. | 
ma.MaskedArray.sum(self[, axis, dtype, out, …]) | 
Return the sum of the array elements over the given axis. | 
ma.MaskedArray.var(self[, axis, dtype, out, …]) | 
Compute the variance along the specified axis. | 
Minimum/maximum¶
ma.argmax(self[, axis, fill_value, out]) | 
Returns array of indices of the maximum values along the given axis. | 
ma.argmin(self[, axis, fill_value, out]) | 
Return array of indices to the minimum values along the given axis. | 
ma.max(obj[, axis, out, fill_value, keepdims]) | 
Return the maximum along a given axis. | 
ma.min(obj[, axis, out, fill_value, keepdims]) | 
Return the minimum along a given axis. | 
ma.ptp(obj[, axis, out, fill_value, keepdims]) | 
Return (maximum - minimum) along the given dimension (i.e. | 
ma.MaskedArray.argmax(self[, axis, …]) | 
Returns array of indices of the maximum values along the given axis. | 
ma.MaskedArray.argmin(self[, axis, …]) | 
Return array of indices to the minimum values along the given axis. | 
ma.MaskedArray.max(self[, axis, out, …]) | 
Return the maximum along a given axis. | 
ma.MaskedArray.min(self[, axis, out, …]) | 
Return the minimum along a given axis. | 
ma.MaskedArray.ptp(self[, axis, out, …]) | 
Return (maximum - minimum) along the given dimension (i.e. | 
Sorting¶
ma.argsort(a[, axis, kind, order, endwith, …]) | 
Return an ndarray of indices that sort the array along the specified axis. | 
ma.sort(a[, axis, kind, order, endwith, …]) | 
Sort the array, in-place | 
ma.MaskedArray.argsort(self[, axis, kind, …]) | 
Return an ndarray of indices that sort the array along the specified axis. | 
ma.MaskedArray.sort(self[, axis, kind, …]) | 
Sort the array, in-place | 
Algebra¶
ma.diag(v[, k]) | 
Extract a diagonal or construct a diagonal array. | 
ma.dot(a, b[, strict, out]) | 
Return the dot product of two arrays. | 
ma.identity(n[, dtype]) | 
Return the identity array. | 
ma.inner(a, b) | 
Inner product of two arrays. | 
ma.innerproduct(a, b) | 
Inner product of two arrays. | 
ma.outer(a, b) | 
Compute the outer product of two vectors. | 
ma.outerproduct(a, b) | 
Compute the outer product of two vectors. | 
ma.trace(self[, offset, axis1, axis2, …]) | 
Return the sum along diagonals of the array. | 
ma.transpose(a[, axes]) | 
Permute the dimensions of an array. | 
ma.MaskedArray.trace([offset, axis1, axis2, …]) | 
Return the sum along diagonals of the array. | 
ma.MaskedArray.transpose(*axes) | 
Returns a view of the array with axes transposed. | 
Polynomial fit¶
ma.vander(x[, n]) | 
Generate a Vandermonde matrix. | 
ma.polyfit(x, y, deg[, rcond, full, w, cov]) | 
Least squares polynomial fit. | 
Clipping and rounding¶
ma.around(a, \*args, \*\*kwargs) | 
Round an array to the given number of decimals. | 
ma.clip(a, a_min, a_max[, out]) | 
Clip (limit) the values in an array. | 
ma.round(a[, decimals, out]) | 
Return a copy of a, rounded to ‘decimals’ places. | 
ma.MaskedArray.clip([min, max, out]) | 
Return an array whose values are limited to [min, max]. | 
ma.MaskedArray.round(self[, decimals, out]) | 
Return each element rounded to the given number of decimals. | 
Miscellanea¶
ma.allequal(a, b[, fill_value]) | 
Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked. | 
ma.allclose(a, b[, masked_equal, rtol, atol]) | 
Returns True if two arrays are element-wise equal within a tolerance. | 
ma.apply_along_axis(func1d, axis, arr, …) | 
Apply a function to 1-D slices along the given axis. | 
ma.arange([start,] stop[, step,][, dtype]) | 
Return evenly spaced values within a given interval. | 
ma.choose(indices, choices[, out, mode]) | 
Use an index array to construct a new array from a set of choices. | 
ma.ediff1d(arr[, to_end, to_begin]) | 
Compute the differences between consecutive elements of an array. | 
ma.indices(dimensions[, dtype, sparse]) | 
Return an array representing the indices of a grid. | 
ma.where(condition[, x, y]) | 
Return a masked array with elements from x or y, depending on condition. | 
