SciPy

This is documentation for an old release of NumPy (version 1.17.0). Read this page in the documentation of the latest stable release (version > 1.17).

numpy.ma.masked_inside

numpy.ma.masked_inside(x, v1, v2, copy=True)[source]

Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1 <= x <= v2). The boundaries v1 and v2 can be given in either order.

See also

masked_where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>>
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
             mask=[False, False,  True,  True, False, False],
       fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>>
>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
             mask=[False, False,  True,  True, False, False],
       fill_value=1e+20)

Previous topic

numpy.ma.masked_greater_equal

Next topic

numpy.ma.masked_invalid