SciPy

numpy.ma.MaskedArray.reshape

method

MaskedArray.reshape(self, *s, **kwargs)[source]

Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape. The result is a view on the original array; if this is not possible, a ValueError is raised.

Parameters:
shape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer is supplied, then the result will be a 1-D array of that length.

order : {‘C’, ‘F’}, optional

Determines whether the array data should be viewed as in C (row-major) or FORTRAN (column-major) order.

Returns:
reshaped_array : array

A new view on the array.

See also

reshape
Equivalent function in the masked array module.
numpy.ndarray.reshape
Equivalent method on ndarray object.
numpy.reshape
Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use a.shape = s

Examples

>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> x
masked_array(
  data=[[--, 2],
        [3, --]],
  mask=[[ True, False],
        [False,  True]],
  fill_value=999999)
>>> x = x.reshape((4,1))
>>> x
masked_array(
  data=[[--],
        [2],
        [3],
        [--]],
  mask=[[ True],
        [False],
        [False],
        [ True]],
  fill_value=999999)

Previous topic

numpy.ma.MaskedArray.ravel

Next topic

numpy.ma.MaskedArray.resize