numpy.ma.mask_rowcols¶
-
numpy.ma.
mask_rowcols
(a, axis=None)[source]¶ Mask rows and/or columns of a 2D array that contain masked values.
Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter.
- If axis is None, rows and columns are masked.
- If axis is 0, only rows are masked.
- If axis is 1 or -1, only columns are masked.
Parameters: - a : array_like, MaskedArray
The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with mask set to
nomask
(False). Must be a 2D array.- axis : int, optional
Axis along which to perform the operation. If None, applies to a flattened version of the array.
Returns: - a : MaskedArray
A modified version of the input array, masked depending on the value of the axis parameter.
Raises: - NotImplementedError
If input array a is not 2D.
See also
mask_rows
- Mask rows of a 2D array that contain masked values.
mask_cols
- Mask cols of a 2D array that contain masked values.
masked_where
- Mask where a condition is met.
Notes
The input array’s mask is modified by this function.
Examples
>>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_rowcols(a) masked_array( data=[[0, --, 0], [--, --, --], [0, --, 0]], mask=[[False, True, False], [ True, True, True], [False, True, False]], fill_value=1)