Trapezoidal Distribution#
Two shape parameters \(c\in[0,1], d\in[0, 1]\) giving the distances to the first and second modes as a percentage of the total extent of the non-zero portion. The location parameter is the start of the non- zero portion, and the scale-parameter is the width of the non-zero portion. In standard form we have \(x\in\left[0,1\right].\)
 \begin{eqnarray*}
     u(c, d) & = & \frac{2}{d - c + 1} \\
     f\left(x;c, d\right) & = & \left\{
                                 \begin{array}{ccc}
                                     \frac{ux}{c} &  & x < c \\
                                     u & & c\leq x \leq d \\
                                     u\frac{1-x}{1-d} &  & x > d \\
                                 \end{array}
                             \right.\\
     F\left(x;c, d\right) & = & \left\{
                                 \begin{array}{ccc}
                                     \frac{ux^{2}}{2c} &  & x < c \\
                                     \frac{uc}{2} + u(x-c) &  & c\leq x \leq d \\
                                     1 - \frac{u(1 - x)^2}{2(1 - d)} &  & x > d \\
                                 \end{array}
                             \right.\\
     G\left(q;c, d\right) & = & \left\{
                                 \begin{array}{ccc}
                                     \sqrt{qc(d-c+1)} &  & q < c \\
                                     \frac{q}{u}+ \frac{c}{2} &  & q \leq d \\
                                     1 - \sqrt{\frac{2(1 - q) (1 - d)}{u}} &  & q > d \\
                                 \end{array}
                             \right.
 \end{eqnarray*}
Implementation: scipy.stats.trapezoid