scipy.linalg.svdvals#
- scipy.linalg.svdvals(a, overwrite_a=False, check_finite=True)[source]#
Compute singular values of a matrix.
- Parameters
- a(M, N) array_like
Matrix to decompose.
- overwrite_abool, optional
Whether to overwrite a; may improve performance. Default is False.
- check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- s(min(M, N),) ndarray
The singular values, sorted in decreasing order.
- Raises
- LinAlgError
If SVD computation does not converge.
See also
Notes
svdvals(a)
only differs fromsvd(a, compute_uv=False)
by its handling of the edge case of emptya
, where it returns an empty sequence:>>> a = np.empty((0, 2)) >>> from scipy.linalg import svdvals >>> svdvals(a) array([], dtype=float64)
Examples
>>> from scipy.linalg import svdvals >>> m = np.array([[1.0, 0.0], ... [2.0, 3.0], ... [1.0, 1.0], ... [0.0, 2.0], ... [1.0, 0.0]]) >>> svdvals(m) array([ 4.28091555, 1.63516424])
We can verify the maximum singular value of m by computing the maximum length of m.dot(u) over all the unit vectors u in the (x,y) plane. We approximate “all” the unit vectors with a large sample. Because of linearity, we only need the unit vectors with angles in [0, pi].
>>> t = np.linspace(0, np.pi, 2000) >>> u = np.array([np.cos(t), np.sin(t)]) >>> np.linalg.norm(m.dot(u), axis=0).max() 4.2809152422538475
p is a projection matrix with rank 1. With exact arithmetic, its singular values would be [1, 0, 0, 0].
>>> v = np.array([0.1, 0.3, 0.9, 0.3]) >>> p = np.outer(v, v) >>> svdvals(p) array([ 1.00000000e+00, 2.02021698e-17, 1.56692500e-17, 8.15115104e-34])
The singular values of an orthogonal matrix are all 1. Here, we create a random orthogonal matrix by using the rvs() method of
scipy.stats.ortho_group
.>>> from scipy.stats import ortho_group >>> orth = ortho_group.rvs(4) >>> svdvals(orth) array([ 1., 1., 1., 1.])