scipy.stats.ortho_group#
- scipy.stats.ortho_group = <scipy.stats._multivariate.ortho_group_gen object>[source]#
An Orthogonal matrix (O(N)) random variable.
Return a random orthogonal matrix, drawn from the O(N) Haar distribution (the only uniform distribution on O(N)).
The dim keyword specifies the dimension N.
- Parameters
- dimscalar
Dimension of matrices
- seed{None, int, np.random.RandomState, np.random.Generator}, optional
Used for drawing random variates. If seed is None, the RandomState singleton is used. If seed is an int, a new
RandomState
instance is used, seeded with seed. If seed is already aRandomState
orGenerator
instance, then that object is used. Default is None.
See also
Notes
This class is closely related to
special_ortho_group
.Some care is taken to avoid numerical error, as per the paper by Mezzadri.
References
- 1
F. Mezzadri, “How to generate random matrices from the classical compact groups”, arXiv:math-ph/0609050v2.
Examples
>>> from scipy.stats import ortho_group >>> x = ortho_group.rvs(3)
>>> np.dot(x, x.T) array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16], [ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16], [ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])
>>> import scipy.linalg >>> np.fabs(scipy.linalg.det(x)) 1.0
This generates one random matrix from O(3). It is orthogonal and has a determinant of +1 or -1.
Alternatively, the object may be called (as a function) to fix the dim parameter, returning a “frozen” ortho_group random variable:
>>> rv = ortho_group(5) >>> # Frozen object with the same methods but holding the >>> # dimension parameter fixed.
Methods
rvs(dim=None, size=1, random_state=None)
Draw random samples from O(N).