scipy.special.elliprd#

scipy.special.elliprd(x, y, z) = <ufunc 'elliprd'>#

Symmetric elliptic integral of the second kind.

The function RD is defined as [1]

\[R_{\mathrm{D}}(x, y, z) = \frac{3}{2} \int_0^{+\infty} [(t + x) (t + y)]^{-1/2} (t + z)^{-3/2} dt\]
Parameters
x, y, zarray_like

Real or complex input parameters. x or y can be any number in the complex plane cut along the negative real axis, but at most one of them can be zero, while z must be non-zero.

Returns
Rndarray

Value of the integral. If all of x, y, and z are real, the return value is real. Otherwise, the return value is complex.

See also

elliprc

Degenerate symmetric elliptic integral.

elliprf

Completely-symmetric elliptic integral of the first kind.

elliprg

Completely-symmetric elliptic integral of the second kind.

elliprj

Symmetric elliptic integral of the third kind.

Notes

RD is a degenerate case of the elliptic integral RJ: elliprd(x, y, z) == elliprj(x, y, z, z).

The code implements Carlson’s algorithm based on the duplication theorems and series expansion up to the 7th order. [2]

New in version 1.8.0.

References

1

B. C. Carlson, ed., Chapter 19 in “Digital Library of Mathematical Functions,” NIST, US Dept. of Commerce. https://dlmf.nist.gov/19.16.E5

2

B. C. Carlson, “Numerical computation of real or complex elliptic integrals,” Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995. https://arxiv.org/abs/math/9409227 https://doi.org/10.1007/BF02198293