# scipy.integrate.LSODA#

class scipy.integrate.LSODA(fun, t0, y0, t_bound, first_step=None, min_step=0.0, max_step=inf, rtol=0.001, atol=1e-06, jac=None, lband=None, uband=None, vectorized=False, **extraneous)[source]#

Adams/BDF method with automatic stiffness detection and switching.

This is a wrapper to the Fortran solver from ODEPACK [1]. It switches automatically between the nonstiff Adams method and the stiff BDF method. The method was originally detailed in [2].

Parameters
funcallable

Right-hand side of the system. The calling signature is `fun(t, y)`. Here `t` is a scalar, and there are two options for the ndarray `y`: It can either have shape (n,); then `fun` must return array_like with shape (n,). Alternatively it can have shape (n, k); then `fun` must return an array_like with shape (n, k), i.e. each column corresponds to a single column in `y`. The choice between the two options is determined by vectorized argument (see below). The vectorized implementation allows a faster approximation of the Jacobian by finite differences (required for this solver).

t0float

Initial time.

y0array_like, shape (n,)

Initial state.

t_boundfloat

Boundary time - the integration won’t continue beyond it. It also determines the direction of the integration.

first_stepfloat or None, optional

Initial step size. Default is `None` which means that the algorithm should choose.

min_stepfloat, optional

Minimum allowed step size. Default is 0.0, i.e., the step size is not bounded and determined solely by the solver.

max_stepfloat, optional

Maximum allowed step size. Default is np.inf, i.e., the step size is not bounded and determined solely by the solver.

rtol, atolfloat and array_like, optional

Relative and absolute tolerances. The solver keeps the local error estimates less than `atol + rtol * abs(y)`. Here rtol controls a relative accuracy (number of correct digits), while atol controls absolute accuracy (number of correct decimal places). To achieve the desired rtol, set atol to be lower than the lowest value that can be expected from `rtol * abs(y)` so that rtol dominates the allowable error. If atol is larger than `rtol * abs(y)` the number of correct digits is not guaranteed. Conversely, to achieve the desired atol set rtol such that `rtol * abs(y)` is always lower than atol. If components of y have different scales, it might be beneficial to set different atol values for different components by passing array_like with shape (n,) for atol. Default values are 1e-3 for rtol and 1e-6 for atol.

jacNone or callable, optional

Jacobian matrix of the right-hand side of the system with respect to `y`. The Jacobian matrix has shape (n, n) and its element (i, j) is equal to `d f_i / d y_j`. The function will be called as `jac(t, y)`. If None (default), the Jacobian will be approximated by finite differences. It is generally recommended to provide the Jacobian rather than relying on a finite-difference approximation.

lband, ubandint or None

Parameters defining the bandwidth of the Jacobian, i.e., `jac[i, j] != 0 only for i - lband <= j <= i + uband`. Setting these requires your jac routine to return the Jacobian in the packed format: the returned array must have `n` columns and `uband + lband + 1` rows in which Jacobian diagonals are written. Specifically `jac_packed[uband + i - j , j] = jac[i, j]`. The same format is used in `scipy.linalg.solve_banded` (check for an illustration). These parameters can be also used with `jac=None` to reduce the number of Jacobian elements estimated by finite differences.

vectorizedbool, optional

Whether fun is implemented in a vectorized fashion. A vectorized implementation offers no advantages for this solver. Default is False.

References

1

A. C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE Solvers,” IMACS Transactions on Scientific Computation, Vol 1., pp. 55-64, 1983.

2

L. Petzold, “Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations”, SIAM Journal on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148, 1983.

Attributes
nint

Number of equations.

statusstring

Current status of the solver: ‘running’, ‘finished’ or ‘failed’.

t_boundfloat

Boundary time.

directionfloat

Integration direction: +1 or -1.

tfloat

Current time.

yndarray

Current state.

t_oldfloat

Previous time. None if no steps were made yet.

nfevint

Number of evaluations of the right-hand side.

njevint

Number of evaluations of the Jacobian.

Methods

 Compute a local interpolant over the last successful step. Perform one integration step.