scipy.special.eval_genlaguerre¶
- 
scipy.special.eval_genlaguerre(n, alpha, x, out=None) = <ufunc 'eval_genlaguerre'>¶
- Evaluate generalized Laguerre polynomial at a point. - The generalized Laguerre polynomials can be defined via the confluent hypergeometric function \({}_1F_1\) as \[L_n^{(\alpha)}(x) = \binom{n + \alpha}{n} {}_1F_1(-n, \alpha + 1, x).\]- When \(n\) is an integer the result is a polynomial of degree \(n\). See 22.5.54 in [AS] for details. The Laguerre polynomials are the special case where \(\alpha = 0\). - Parameters
- narray_like
- Degree of the polynomial. If not an integer the result is determined via the relation to the confluent hypergeometric function. 
- alphaarray_like
- Parameter; must have - alpha > -1
- xarray_like
- Points at which to evaluate the generalized Laguerre polynomial 
 
- Returns
- Lndarray
- Values of the generalized Laguerre polynomial 
 
 - See also - roots_genlaguerre
- roots and quadrature weights of generalized Laguerre polynomials 
- genlaguerre
- generalized Laguerre polynomial object 
- hyp1f1
- confluent hypergeometric function 
- eval_laguerre
- evaluate Laguerre polynomials 
 - References - AS
- Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. 
 
