scipy.special.genlaguerre¶
- 
scipy.special.genlaguerre(n, alpha, monic=False)[source]¶
- Generalized (associated) Laguerre polynomial. - Defined to be the solution of \[x\frac{d^2}{dx^2}L_n^{(\alpha)} + (\alpha + 1 - x)\frac{d}{dx}L_n^{(\alpha)} + nL_n^{(\alpha)} = 0,\]- where \(\alpha > -1\); \(L_n^{(\alpha)}\) is a polynomial of degree \(n\). - Parameters
- nint
- Degree of the polynomial. 
- alphafloat
- Parameter, must be greater than -1. 
- monicbool, optional
- If True, scale the leading coefficient to be 1. Default is False. 
 
- Returns
- Lorthopoly1d
- Generalized Laguerre polynomial. 
 
 - See also - laguerre
- Laguerre polynomial. 
 - Notes - For fixed \(\alpha\), the polynomials \(L_n^{(\alpha)}\) are orthogonal over \([0, \infty)\) with weight function \(e^{-x}x^\alpha\). - The Laguerre polynomials are the special case where \(\alpha = 0\). 
