scipy.special.eval_laguerre¶
- 
scipy.special.eval_laguerre(n, x, out=None) = <ufunc 'eval_laguerre'>¶
- Evaluate Laguerre polynomial at a point. - The Laguerre polynomials can be defined via the confluent hypergeometric function \({}_1F_1\) as \[L_n(x) = {}_1F_1(-n, 1, x).\]- See 22.5.16 and 22.5.54 in [AS] for details. When \(n\) is an integer the result is a polynomial of degree \(n\). - Parameters
- narray_like
- Degree of the polynomial. If not an integer the result is determined via the relation to the confluent hypergeometric function. 
- xarray_like
- Points at which to evaluate the Laguerre polynomial 
 
- Returns
- Lndarray
- Values of the Laguerre polynomial 
 
 - See also - roots_laguerre
- roots and quadrature weights of Laguerre polynomials 
- laguerre
- Laguerre polynomial object 
- numpy.polynomial.laguerre.Laguerre
- Laguerre series 
- eval_genlaguerre
- evaluate generalized Laguerre polynomials 
 - References - AS
- Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. 
 
