scipy.interpolate.interp2d¶
-
class
scipy.interpolate.
interp2d
(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=nan)[source]¶ Interpolate over a 2-D grid.
x, y and z are arrays of values used to approximate some function f:
z = f(x, y)
. This class returns a function whose call method uses spline interpolation to find the value of new points.If x and y represent a regular grid, consider using RectBivariateSpline.
Note that calling
interp2d
with NaNs present in input values results in undefined behaviour.- Parameters
- x, yarray_like
Arrays defining the data point coordinates.
If the points lie on a regular grid, x can specify the column coordinates and y the row coordinates, for example:
>>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]]
Otherwise, x and y must specify the full coordinates for each point, for example:
>>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6]
If x and y are multi-dimensional, they are flattened before use.
- zarray_like
The values of the function to interpolate at the data points. If z is a multi-dimensional array, it is flattened before use. The length of a flattened z array is either len(x)*len(y) if x and y specify the column and row coordinates or
len(z) == len(x) == len(y)
if x and y specify coordinates for each point.- kind{‘linear’, ‘cubic’, ‘quintic’}, optional
The kind of spline interpolation to use. Default is ‘linear’.
- copybool, optional
If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy.
- bounds_errorbool, optional
If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then fill_value is used.
- fill_valuenumber, optional
If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated.
See also
RectBivariateSpline
Much faster 2D interpolation if your input data is on a grid
bisplrep
,bisplev
Spline interpolation based on FITPACK
BivariateSpline
a more recent wrapper of the FITPACK routines
interp1d
one dimension version of this function
Notes
The minimum number of data points required along the interpolation axis is
(k+1)**2
, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation.The interpolator is constructed by
bisplrep
, with a smoothing factor of 0. If more control over smoothing is needed,bisplrep
should be used directly.Examples
Construct a 2-D grid and interpolate on it:
>>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic')
Now use the obtained interpolation function and plot the result:
>>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show()
Methods
__call__
(self, x, y[, dx, dy, assume_sorted])Interpolate the function.