scipy.interpolate.RectBivariateSpline¶
-
class
scipy.interpolate.
RectBivariateSpline
(x, y, z, bbox=[None, None, None, None], kx=3, ky=3, s=0)[source]¶ Bivariate spline approximation over a rectangular mesh.
Can be used for both smoothing and interpolating data.
- Parameters
- x,yarray_like
1-D arrays of coordinates in strictly ascending order.
- zarray_like
2-D array of data with shape (x.size,y.size).
- bboxarray_like, optional
Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default,
bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]
.- kx, kyints, optional
Degrees of the bivariate spline. Default is 3.
- sfloat, optional
Positive smoothing factor defined for estimation condition:
sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s
Default iss=0
, which is for interpolation.
See also
SmoothBivariateSpline
a smoothing bivariate spline for scattered data
bisplrep
an older wrapping of FITPACK
bisplev
an older wrapping of FITPACK
UnivariateSpline
a similar class for univariate spline interpolation
Methods
__call__
(self, x, y[, dx, dy, grid])Evaluate the spline or its derivatives at given positions.
ev
(self, xi, yi[, dx, dy])Evaluate the spline at points
get_coeffs
(self)Return spline coefficients.
get_knots
(self)Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual
(self)Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
integral
(self, xa, xb, ya, yb)Evaluate the integral of the spline over area [xa,xb] x [ya,yb].