SciPy

scipy.interpolate.BivariateSpline

class scipy.interpolate.BivariateSpline[source]

Base class for bivariate splines.

This describes a spline s(x, y) of degrees kx and ky on the rectangle [xb, xe] * [yb, ye] calculated from a given set of data points (x, y, z).

This class is meant to be subclassed, not instantiated directly. To construct these splines, call either SmoothBivariateSpline or LSQBivariateSpline.

See also

UnivariateSpline

a similar class for univariate spline interpolation

SmoothBivariateSpline

to create a BivariateSpline through the given points

LSQBivariateSpline

to create a BivariateSpline using weighted least-squares fitting

SphereBivariateSpline

bivariate spline interpolation in spherical cooridinates

bisplrep

older wrapping of FITPACK

bisplev

older wrapping of FITPACK

Methods

__call__(self, x, y[, dx, dy, grid])

Evaluate the spline or its derivatives at given positions.

ev(self, xi, yi[, dx, dy])

Evaluate the spline at points

get_coeffs(self)

Return spline coefficients.

get_knots(self)

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.

get_residual(self)

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)

integral(self, xa, xb, ya, yb)

Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Previous topic

scipy.interpolate.RectSphereBivariateSpline.get_residual

Next topic

scipy.interpolate.BivariateSpline.__call__