Interpolate transition guide#
This page contains three sets of demonstrations:
lower-level FITPACK replacements for
scipy.interpolate.interp2d
for legacy bug-for-bug compatiblescipy.interpolate.interp2d
replacements;recommended replacements for
scipy.interpolate.interp2d
for use in new code;a demonstration of failure modes of 2D FITPACK-based linear interpolation and recommended replacements.
1. How to transition away from using interp2d
#
interp2d
silently switches between interpolation on a 2D regular grid and interpolating 2D scattered data. The switch is based on the lengths of the (raveled) x
, y
, and z
arrays. In short, for regular grid use scipy.interpolate.RectBivariateSpline
; for scattered interpolation, use the bisprep/bisplev
combo. Below we give examples of the literal point-for-point transition, which should preserve the interp2d
results exactly.
1.1 interp2d
on a regular grid#
We start from the (slightly modified) docstring example.
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import interp2d, RectBivariateSpline
>>> x = np.arange(-5.01, 5.01, 0.25)
>>> y = np.arange(-5.01, 7.51, 0.25)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2 + 2.*yy**2)
>>> f = interp2d(x, y, z, kind='cubic')
This is the “regular grid” code path, because
>>> z.size == len(x) * len(y)
True
Also, note that x.size != y.size
:
>>> x.size, y.size
(41, 51)
Now, let’s build a convenience function to construct the interpolator and plot it.
>>> def plot(f, xnew, ynew):
... fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
... znew = f(xnew, ynew)
... ax1.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
... im = ax2.imshow(znew)
... plt.colorbar(im, ax=ax2)
... plt.show()
... return znew
...
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 7.51, 1e-2)
>>> znew_i = plot(f, xnew, ynew)
Replacement: Use RectBivariateSpline
, the result is identical#
Note the transposes: first, in the constructor, second, you need to transpose the result of the evaluation. This is to undo the transposes interp2d
does.
>>> r = RectBivariateSpline(x, y, z.T)
>>> rt = lambda xnew, ynew: r(xnew, ynew).T
>>> znew_r = plot(rt, xnew, ynew)
>>> from numpy.testing import assert_allclose
>>> assert_allclose(znew_i, znew_r, atol=1e-14)
Interpolation order: linear, cubic etc#
interp2d
defaults to kind="linear"
, which is linear in both directions, x-
and y-
.
RectBivariateSpline
, on the other hand, defaults to cubic interpolation,
kx=3, ky=3
.
Here is the exact equivalence:
interp2d |
RectBivariateSpline |
---|---|
no kwargs |
kx = 1, ky = 1 |
kind=’linear’ |
kx = 1, ky = 1 |
kind=’cubic’ |
kx = 3, ky = 3 |
1.2. interp2d
with full coordinates of points (scattered interpolation)#
Here, we flatten the meshgrid from the previous exercise to illustrate the functionality.
>>> xxr = xx.ravel()
>>> yyr = yy.ravel()
>>> zzr = z.ravel()
>>> f = interp2d(xxr, yyr, zzr, kind='cubic')
Note that this the “not regular grid” code path, meant for scattered data, with len(x) == len(y) == len(z)
.
>>> len(xxr) == len(yyr) == len(zzr)
True
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 7.51, 1e-2)
>>> znew_i = plot(f, xnew, ynew)
Replacement: Use scipy.interpolate.bisplrep
/ scipy.interpolate.bisplev
directly#
>>> from scipy.interpolate import bisplrep, bisplev
>>> tck = bisplrep(xxr, yyr, zzr, kx=3, ky=3, s=0)
# convenience: make up a callable from bisplev
>>> ff = lambda xnew, ynew: bisplev(xnew, ynew, tck).T # Note the transpose, to mimic what interp2d does
>>> znew_b = plot(ff, xnew, ynew)
>>> assert_allclose(znew_i, znew_b, atol=1e-15)
Interpolation order: linear, cubic etc#
interp2d
defaults to kind="linear"
, which is linear in both directions, x-
and y-
.
bisplrep
, on the other hand, defaults to cubic interpolation,
kx=3, ky=3
.
Here is the exact equivalence:
|
|
---|---|
no kwargs |
kx = 1, ky = 1 |
kind=’linear’ |
kx = 1, ky = 1 |
kind=’cubic’ |
kx = 3, ky = 3 |
2. Alternative to interp2d
: regular grid#
For new code, the recommended alternative is RegularGridInterpolator
. It is an independent implementation, not based on FITPACK. Supports nearest, linear interpolation and odd-order tensor product splines.
The spline knots are guaranteed to coincide with the data points.
Note that, here:
the tuple argument, is
(x, y)
z
array needs a transposethe keyword name is method, not kind
bounds_error
argument isTrue
by default.
>>> from scipy.interpolate import RegularGridInterpolator as RGI
>>> r = RGI((x, y), z.T, method='linear', bounds_error=False)
Evaluation: create a 2D meshgrid. Use indexing=’ij’ and sparse=True
to save some memory:
>>> xxnew, yynew = np.meshgrid(xnew, ynew, indexing='ij', sparse=True)
Evaluate, note the tuple argument:
>>> znew_reggrid = r((xxnew, yynew))
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
# Again, note the transpose to undo the `interp2d` convention
>>> znew_reggrid_t = znew_reggrid.T
>>> ax1.plot(x, z[0, :], 'ro-', xnew, znew_reggrid_t[0, :], 'b-')
>>> im = ax2.imshow(znew_reggrid_t)
>>> plt.colorbar(im, ax=ax2)
3. Scattered 2D linear interpolation: prefer LinearNDInterpolator
to SmoothBivariateSpline
or bisplrep
#
For 2D scattered linear interpolation, both SmoothBivariateSpline
and biplrep
may either emit warnings, or fail to interpolate the data, or produce splines which with knots away from the data points. Instead, prefer LinearNDInterpolator
, which is based on triangulating the data via QHull
.
# TestSmoothBivariateSpline::test_integral
>>> from scipy.interpolate import SmoothBivariateSpline, LinearNDInterpolator
>>> x = np.array([1,1,1,2,2,2,4,4,4])
>>> y = np.array([1,2,3,1,2,3,1,2,3])
>>> z = np.array([0,7,8,3,4,7,1,3,4])
Now, use the linear interpolation over Qhull-based triangulation of data:
>>> xy = np.c_[x, y] # or just list(zip(x, y))
>>> lut2 = LinearNDInterpolator(xy, z)
>>> X = np.linspace(min(x), max(x))
>>> Y = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(X, Y)
The result is easy to understand and interpret:
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> ax.plot_wireframe(X, Y, lut2(X, Y))
>>> ax.scatter(x, y, z, 'o', color='k', s=48)
Note that bisplrep
does something different! It may place spline knots outside of the data.
For illustration, consider the same data from the previous example:
>>> tck = bisplrep(x, y, z, kx=1, ky=1, s=0)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> xx = np.linspace(min(x), max(x))
>>> yy = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(xx, yy)
>>> Z = bisplev(xx, yy, tck)
>>> Z = Z.reshape(*X.shape).T
>>> ax.plot_wireframe(X, Y, Z, rstride=2, cstride=2)
>>> ax.scatter(x, y, z, 'o', color='k', s=48)
Also, SmoothBivariateSpline
fails to interpolate the data. Again, use the same data from the previous example.
>>> lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> xx = np.linspace(min(x), max(x))
>>> yy = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(xx, yy)
>>> ax.plot_wireframe(X, Y, lut(xx, yy).T, rstride=4, cstride=4)
>>> ax.scatter(x, y, z, 'o', color='k', s=48)
Note that both SmoothBivariateSpline
and bisplrep
results have artifacts, unlike the LinearNDInterpolator
’s. Issues illustrated here were reported for linear interpolation, however the FITPACK knot-selection mechanism does not guarantee to avoid either of these issues for higher-order (e.g. cubic) spline surfaces.