scipy.special.gdtr#
- scipy.special.gdtr(a, b, x, out=None) = <ufunc 'gdtr'>#
Gamma distribution cumulative distribution function.
Returns the integral from zero to x of the gamma probability density function,
\[F = \int_0^x \frac{a^b}{\Gamma(b)} t^{b-1} e^{-at}\,dt,\]where \(\Gamma\) is the gamma function.
- Parameters:
- aarray_like
The rate parameter of the gamma distribution, sometimes denoted \(\beta\) (float). It is also the reciprocal of the scale parameter \(\theta\).
- barray_like
The shape parameter of the gamma distribution, sometimes denoted \(\alpha\) (float).
- xarray_like
The quantile (upper limit of integration; float).
- outndarray, optional
Optional output array for the function values
- Returns:
- Fscalar or ndarray
The CDF of the gamma distribution with parameters a and b evaluated at x.
See also
gdtrc
1 - CDF of the gamma distribution.
scipy.stats.gamma
Gamma distribution
Notes
The evaluation is carried out using the relation to the incomplete gamma integral (regularized gamma function).
Wrapper for the Cephes [1] routine
gdtr
. Callinggdtr
directly can improve performance compared to thecdf
method ofscipy.stats.gamma
(see last example below).References
[1]Cephes Mathematical Functions Library, http://www.netlib.org/cephes/
Examples
Compute the function for
a=1
,b=2
atx=5
.>>> import numpy as np >>> from scipy.special import gdtr >>> import matplotlib.pyplot as plt >>> gdtr(1., 2., 5.) 0.9595723180054873
Compute the function for
a=1
andb=2
at several points by providing a NumPy array for x.>>> xvalues = np.array([1., 2., 3., 4]) >>> gdtr(1., 1., xvalues) array([0.63212056, 0.86466472, 0.95021293, 0.98168436])
gdtr
can evaluate different parameter sets by providing arrays with broadcasting compatible shapes for a, b and x. Here we compute the function for three different a at four positions x andb=3
, resulting in a 3x4 array.>>> a = np.array([[0.5], [1.5], [2.5]]) >>> x = np.array([1., 2., 3., 4]) >>> a.shape, x.shape ((3, 1), (4,))
>>> gdtr(a, 3., x) array([[0.01438768, 0.0803014 , 0.19115317, 0.32332358], [0.19115317, 0.57680992, 0.82642193, 0.9380312 ], [0.45618688, 0.87534798, 0.97974328, 0.9972306 ]])
Plot the function for four different parameter sets.
>>> a_parameters = [0.3, 1, 2, 6] >>> b_parameters = [2, 10, 15, 20] >>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot'] >>> parameters_list = list(zip(a_parameters, b_parameters, linestyles)) >>> x = np.linspace(0, 30, 1000) >>> fig, ax = plt.subplots() >>> for parameter_set in parameters_list: ... a, b, style = parameter_set ... gdtr_vals = gdtr(a, b, x) ... ax.plot(x, gdtr_vals, label=f"$a= {a},\, b={b}$", ls=style) >>> ax.legend() >>> ax.set_xlabel("$x$") >>> ax.set_title("Gamma distribution cumulative distribution function") >>> plt.show()
The gamma distribution is also available as
scipy.stats.gamma
. Usinggdtr
directly can be much faster than calling thecdf
method ofscipy.stats.gamma
, especially for small arrays or individual values. To get the same results one must use the following parametrization:stats.gamma(b, scale=1/a).cdf(x)=gdtr(a, b, x)
.>>> from scipy.stats import gamma >>> a = 2. >>> b = 3 >>> x = 1. >>> gdtr_result = gdtr(a, b, x) # this will often be faster than below >>> gamma_dist_result = gamma(b, scale=1/a).cdf(x) >>> gdtr_result == gamma_dist_result # test that results are equal True