scipy.special.elliprd#
- scipy.special.elliprd(x, y, z, out=None) = <ufunc 'elliprd'>#
Symmetric elliptic integral of the second kind.
The function RD is defined as [1]
\[R_{\mathrm{D}}(x, y, z) = \frac{3}{2} \int_0^{+\infty} [(t + x) (t + y)]^{-1/2} (t + z)^{-3/2} dt\]- Parameters:
- x, y, zarray_like
Real or complex input parameters. x or y can be any number in the complex plane cut along the negative real axis, but at most one of them can be zero, while z must be non-zero.
- outndarray, optional
Optional output array for the function values
- Returns:
- Rscalar or ndarray
Value of the integral. If all of x, y, and z are real, the return value is real. Otherwise, the return value is complex.
See also
Notes
RD is a degenerate case of the elliptic integral RJ:
elliprd(x, y, z) == elliprj(x, y, z, z)
.The code implements Carlson’s algorithm based on the duplication theorems and series expansion up to the 7th order. [2]
New in version 1.8.0.
References
[1]B. C. Carlson, ed., Chapter 19 in “Digital Library of Mathematical Functions,” NIST, US Dept. of Commerce. https://dlmf.nist.gov/19.16.E5
[2]B. C. Carlson, “Numerical computation of real or complex elliptic integrals,” Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995. https://arxiv.org/abs/math/9409227 https://doi.org/10.1007/BF02198293
Examples
Basic homogeneity property:
>>> import numpy as np >>> from scipy.special import elliprd
>>> x = 1.2 + 3.4j >>> y = 5. >>> z = 6. >>> scale = 0.3 + 0.4j >>> elliprd(scale*x, scale*y, scale*z) (-0.03703043835680379-0.24500934665683802j)
>>> elliprd(x, y, z)*np.power(scale, -1.5) (-0.0370304383568038-0.24500934665683805j)
All three arguments coincide:
>>> x = 1.2 + 3.4j >>> elliprd(x, x, x) (-0.03986825876151896-0.14051741840449586j)
>>> np.power(x, -1.5) (-0.03986825876151894-0.14051741840449583j)
The so-called “second lemniscate constant”:
>>> elliprd(0, 2, 1)/3 0.5990701173677961
>>> from scipy.special import gamma >>> gamma(0.75)**2/np.sqrt(2*np.pi) 0.5990701173677959