Multi-dimensional image processing (scipy.ndimage)¶
This package contains various functions for multi-dimensional image processing.
Filters¶
convolve(input, weights[, output, mode, …]) | 
Multidimensional convolution. | 
convolve1d(input, weights[, axis, output, …]) | 
Calculate a one-dimensional convolution along the given axis. | 
correlate(input, weights[, output, mode, …]) | 
Multi-dimensional correlation. | 
correlate1d(input, weights[, axis, output, …]) | 
Calculate a one-dimensional correlation along the given axis. | 
gaussian_filter(input, sigma[, order, …]) | 
Multidimensional Gaussian filter. | 
gaussian_filter1d(input, sigma[, axis, …]) | 
One-dimensional Gaussian filter. | 
gaussian_gradient_magnitude(input, sigma[, …]) | 
Multidimensional gradient magnitude using Gaussian derivatives. | 
gaussian_laplace(input, sigma[, output, …]) | 
Multidimensional Laplace filter using gaussian second derivatives. | 
generic_filter(input, function[, size, …]) | 
Calculate a multi-dimensional filter using the given function. | 
generic_filter1d(input, function, filter_size) | 
Calculate a one-dimensional filter along the given axis. | 
generic_gradient_magnitude(input, derivative) | 
Gradient magnitude using a provided gradient function. | 
generic_laplace(input, derivative2[, …]) | 
N-dimensional Laplace filter using a provided second derivative function. | 
laplace(input[, output, mode, cval]) | 
N-dimensional Laplace filter based on approximate second derivatives. | 
maximum_filter(input[, size, footprint, …]) | 
Calculate a multi-dimensional maximum filter. | 
maximum_filter1d(input, size[, axis, …]) | 
Calculate a one-dimensional maximum filter along the given axis. | 
median_filter(input[, size, footprint, …]) | 
Calculate a multidimensional median filter. | 
minimum_filter(input[, size, footprint, …]) | 
Calculate a multi-dimensional minimum filter. | 
minimum_filter1d(input, size[, axis, …]) | 
Calculate a one-dimensional minimum filter along the given axis. | 
percentile_filter(input, percentile[, size, …]) | 
Calculate a multi-dimensional percentile filter. | 
prewitt(input[, axis, output, mode, cval]) | 
Calculate a Prewitt filter. | 
rank_filter(input, rank[, size, footprint, …]) | 
Calculate a multi-dimensional rank filter. | 
sobel(input[, axis, output, mode, cval]) | 
Calculate a Sobel filter. | 
uniform_filter(input[, size, output, mode, …]) | 
Multi-dimensional uniform filter. | 
uniform_filter1d(input, size[, axis, …]) | 
Calculate a one-dimensional uniform filter along the given axis. | 
Fourier filters¶
fourier_ellipsoid(input, size[, n, axis, output]) | 
Multi-dimensional ellipsoid fourier filter. | 
fourier_gaussian(input, sigma[, n, axis, output]) | 
Multi-dimensional Gaussian fourier filter. | 
fourier_shift(input, shift[, n, axis, output]) | 
Multi-dimensional fourier shift filter. | 
fourier_uniform(input, size[, n, axis, output]) | 
Multi-dimensional uniform fourier filter. | 
Interpolation¶
affine_transform(input, matrix[, offset, …]) | 
Apply an affine transformation. | 
geometric_transform(input, mapping[, …]) | 
Apply an arbitrary geometric transform. | 
map_coordinates(input, coordinates[, …]) | 
Map the input array to new coordinates by interpolation. | 
rotate(input, angle[, axes, reshape, …]) | 
Rotate an array. | 
shift(input, shift[, output, order, mode, …]) | 
Shift an array. | 
spline_filter(input[, order, output]) | 
Multi-dimensional spline filter. | 
spline_filter1d(input[, order, axis, output]) | 
Calculate a one-dimensional spline filter along the given axis. | 
zoom(input, zoom[, output, order, mode, …]) | 
Zoom an array. | 
Measurements¶
center_of_mass(input[, labels, index]) | 
Calculate the center of mass of the values of an array at labels. | 
extrema(input[, labels, index]) | 
Calculate the minimums and maximums of the values of an array at labels, along with their positions. | 
find_objects(input[, max_label]) | 
Find objects in a labeled array. | 
histogram(input, min, max, bins[, labels, index]) | 
Calculate the histogram of the values of an array, optionally at labels. | 
label(input[, structure, output]) | 
Label features in an array. | 
labeled_comprehension(input, labels, index, …) | 
Roughly equivalent to [func(input[labels == i]) for i in index]. | 
maximum(input[, labels, index]) | 
Calculate the maximum of the values of an array over labeled regions. | 
maximum_position(input[, labels, index]) | 
Find the positions of the maximums of the values of an array at labels. | 
mean(input[, labels, index]) | 
Calculate the mean of the values of an array at labels. | 
median(input[, labels, index]) | 
Calculate the median of the values of an array over labeled regions. | 
minimum(input[, labels, index]) | 
Calculate the minimum of the values of an array over labeled regions. | 
minimum_position(input[, labels, index]) | 
Find the positions of the minimums of the values of an array at labels. | 
standard_deviation(input[, labels, index]) | 
Calculate the standard deviation of the values of an n-D image array, optionally at specified sub-regions. | 
sum(input[, labels, index]) | 
Calculate the sum of the values of the array. | 
variance(input[, labels, index]) | 
Calculate the variance of the values of an n-D image array, optionally at specified sub-regions. | 
watershed_ift(input, markers[, structure, …]) | 
Apply watershed from markers using image foresting transform algorithm. | 
Morphology¶
binary_closing(input[, structure, …]) | 
Multi-dimensional binary closing with the given structuring element. | 
binary_dilation(input[, structure, …]) | 
Multi-dimensional binary dilation with the given structuring element. | 
binary_erosion(input[, structure, …]) | 
Multi-dimensional binary erosion with a given structuring element. | 
binary_fill_holes(input[, structure, …]) | 
Fill the holes in binary objects. | 
binary_hit_or_miss(input[, structure1, …]) | 
Multi-dimensional binary hit-or-miss transform. | 
binary_opening(input[, structure, …]) | 
Multi-dimensional binary opening with the given structuring element. | 
binary_propagation(input[, structure, mask, …]) | 
Multi-dimensional binary propagation with the given structuring element. | 
black_tophat(input[, size, footprint, …]) | 
Multi-dimensional black tophat filter. | 
distance_transform_bf(input[, metric, …]) | 
Distance transform function by a brute force algorithm. | 
distance_transform_cdt(input[, metric, …]) | 
Distance transform for chamfer type of transforms. | 
distance_transform_edt(input[, sampling, …]) | 
Exact euclidean distance transform. | 
generate_binary_structure(rank, connectivity) | 
Generate a binary structure for binary morphological operations. | 
grey_closing(input[, size, footprint, …]) | 
Multi-dimensional greyscale closing. | 
grey_dilation(input[, size, footprint, …]) | 
Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element. | 
grey_erosion(input[, size, footprint, …]) | 
Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element. | 
grey_opening(input[, size, footprint, …]) | 
Multi-dimensional greyscale opening. | 
iterate_structure(structure, iterations[, …]) | 
Iterate a structure by dilating it with itself. | 
morphological_gradient(input[, size, …]) | 
Multi-dimensional morphological gradient. | 
morphological_laplace(input[, size, …]) | 
Multi-dimensional morphological laplace. | 
white_tophat(input[, size, footprint, …]) | 
Multi-dimensional white tophat filter. | 
