This is documentation for an old release of SciPy (version 1.1.0). Read this page in the documentation of the latest stable release (version 1.15.0).
scipy.ndimage.variance¶
-
scipy.ndimage.
variance
(input, labels=None, index=None)[source]¶ Calculate the variance of the values of an n-D image array, optionally at specified sub-regions.
Parameters: - input : array_like
Nd-image data to process.
- labels : array_like, optional
Labels defining sub-regions in input. If not None, must be same shape as input.
- index : int or sequence of ints, optional
labels to include in output. If None (default), all values where labels is non-zero are used.
Returns: - variance : float or ndarray
Values of variance, for each sub-region if labels and index are specified.
See also
Examples
>>> a = np.array([[1, 2, 0, 0], ... [5, 3, 0, 4], ... [0, 0, 0, 7], ... [9, 3, 0, 0]]) >>> from scipy import ndimage >>> ndimage.variance(a) 7.609375
Features to process can be specified using labels and index:
>>> lbl, nlbl = ndimage.label(a) >>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1)) array([ 2.1875, 2.25 , 9. ])
If no index is given, all non-zero labels are processed:
>>> ndimage.variance(a, lbl) 6.1875