Kolmogorov-Smirnov A one-sided test statistic. continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
n : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | ksone.rvs(n,loc=0,scale=1,size=1) :
ksone.pdf(x,n,loc=0,scale=1) :
ksone.cdf(x,n,loc=0,scale=1) :
ksone.sf(x,n,loc=0,scale=1) :
ksone.ppf(q,n,loc=0,scale=1) :
ksone.isf(q,n,loc=0,scale=1) :
ksone.stats(n,loc=0,scale=1,moments=’mv’) :
ksone.entropy(n,loc=0,scale=1) :
ksone.fit(data,n,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = ksone(n,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = ksone.numargs
>>> [ n ] = [0.9,]*numargs
>>> rv = ksone(n)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = ksone.cdf(x,n)
>>> h=plt.semilogy(np.abs(x-ksone.ppf(prb,c))+1e-20)
Random number generation
>>> R = ksone.rvs(n,size=100)
General Kolmogorov-Smirnov one-sided test.