A wrapped Cauchy continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
c : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | wrapcauchy.rvs(c,loc=0,scale=1,size=1) :
wrapcauchy.pdf(x,c,loc=0,scale=1) :
wrapcauchy.cdf(x,c,loc=0,scale=1) :
wrapcauchy.sf(x,c,loc=0,scale=1) :
wrapcauchy.ppf(q,c,loc=0,scale=1) :
wrapcauchy.isf(q,c,loc=0,scale=1) :
wrapcauchy.stats(c,loc=0,scale=1,moments=’mv’) :
wrapcauchy.entropy(c,loc=0,scale=1) :
wrapcauchy.fit(data,c,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = wrapcauchy(c,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = wrapcauchy.numargs
>>> [ c ] = [0.9,]*numargs
>>> rv = wrapcauchy(c)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = wrapcauchy.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-wrapcauchy.ppf(prb,c))+1e-20)
Random number generation
>>> R = wrapcauchy.rvs(c,size=100)
Wrapped Cauchy distribution
wrapcauchy.pdf(x,c) = (1-c**2) / (2*pi*(1+c**2-2*c*cos(x))) for 0 <= x <= 2*pi, 0 < c < 1.