Kolmogorov-Smirnov two-sided (for large N) continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
<shape(s)> : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | kstwobign.rvs(loc=0,scale=1,size=1) :
kstwobign.pdf(x,loc=0,scale=1) :
kstwobign.cdf(x,loc=0,scale=1) :
kstwobign.sf(x,loc=0,scale=1) :
kstwobign.ppf(q,loc=0,scale=1) :
kstwobign.isf(q,loc=0,scale=1) :
kstwobign.stats(loc=0,scale=1,moments=’mv’) :
kstwobign.entropy(loc=0,scale=1) :
kstwobign.fit(data,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = kstwobign(loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = kstwobign.numargs
>>> [ <shape(s)> ] = [0.9,]*numargs
>>> rv = kstwobign(<shape(s)>)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = kstwobign.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-kstwobign.ppf(prb,c))+1e-20)
Random number generation
>>> R = kstwobign.rvs(size=100)
Kolmogorov-Smirnov two-sided test for large N