scipy.stats.mstats.describe¶
- scipy.stats.mstats.describe(a, axis=0, ddof=0, bias=True)[source]¶
Computes several descriptive statistics of the passed array.
Parameters: a : array_like
Data array
axis : int or None, optional
Axis along which to calculate statistics. Default 0. If None, compute over the whole array a.
ddof : int, optional
degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe
bias : bool, optional
If False, then the skewness and kurtosis calculations are corrected for statistical bias.
Returns: nobs : int
(size of the data (discarding missing values)
minmax : (int, int)
min, max
mean : float
arithmetic mean
variance : float
unbiased variance
skewness : float
biased skewness
kurtosis : float
biased kurtosis
Examples
>>> from scipy.stats.mstats import describe >>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1]) >>> describe(ma) DescribeResult(nobs=array(3), minmax=(masked_array(data = 0, mask = False, fill_value = 999999) , masked_array(data = 2, mask = False, fill_value = 999999) ), mean=1.0, variance=0.66666666666666663, skewness=masked_array(data = 0.0, mask = False, fill_value = 1e+20) , kurtosis=-1.5)